Mathematics

Year 12 Summer Tasks

Welcome to Mathematics at St Peter's. The purpose of this booklet is to introduce you to the subject that you have chosen to study with us at A-Level.

The Mathematics department aims to develop your logic and problem solving skills whist introducing you to more complex mathematical material through the study of Pure mathematics and showing the versatility of this subject through the applications of Mechanics and Statistics.

Successful study in the sixth form is all about developing the right skills, preparation, independent learning and self-motivation. We will do all we can to support you in your learning and would like you to do the same. In preparation for the first term of study please complete the following:

Task

Using the "GCSE to A-Level Transition tasks" filled with the most important GCSE topics please spend some time working through the questions so that when you arrive with us in September you can make the best possible start to your studies. If you are currently at St Peter's these are the tasks that have been set through teams and DrFrostmaths.com.

Layout and structure of your workings is an important skill to develop at A Level, as well as the ability to self-study outside of the subject. Therefore we ask that you make sure you are demonstrating methods where necessary and use the videos provided to work on these key skills.

For current student work will be marked weekly, external students can give their work to their teacher when they arrive.

Equipment

In order that you are prepared for your studies next year please have the following things ready for the start of term. An A4 folder for your notes, class handouts and written assignments. *It is important that folders are brought to each lesson so teachers can keep a track on your progress. We have found that many students buy a relatively think folder to bring to every lesson, but have a larger lever ached file at home to transfer older notes into to avoid overloading on a daily basis.* Dividers for folders to keep different topic notes separate, perhaps between your two teachers.

A4 5mm square (ideally) of A4 lined pad of paper

A specific exam eligible calculator will be needed. We suggest the Casio Classwiz fx-991EX. They are available for around £20 but can be found cheaper.

Enjoy your summer – we look forward to working with you in Year 12

Year 11 Preparing for A Level Maths: Helpful Videos and Resources for Working from Home

		Carthatt Mathe Videos and Besources
	Topics to Prepare for A-level Maths	Cortbett Maths Videos and Resources
1		(No subscription required)
1	Manipulating algebraic expressions	15 - Algebra: expanding three brackets
		21 - Algebraic Fractions: addition
		22 - Algebraic Fractions: division
-		23 - Algebraic Fractions: Multiplication
2	Surds	305 - Surds: intro, rules, simplifying
		307 - Surds: rationalising denominators
		308 - Surds: expanding brackets
3	Rules of indices	173 - Indices: fractional
		174 - Indices: laws of
		175 - Indices: negative
4	Factorising expressions	119a - Factorisation: splitting the middle
		120 - Factorisation: difference of 2 squares
		24 - Algebraic Fractions: Simplifying
5	Completing the square	10 - Algebra: completing the square
6	Solving quadratic equations	266 - Quadratics: solving (factorising)
		267 - Quadratics: formula
		267a - Quadratics: solving (completing the square)
7	Sketching quadratic graphs	265 - Quadratic graphs: sketching using key points
		371 - Quadratic graph (completing the square)
8	Solving linear simultaneous equations	295 - Simultaneous equations (elimination)
		296 - Simultaneous equations (substitution, both linear)
0		12 Alashar suchian of scients
9	Solving quadratic simultaneous	12 - Algebra: equation of a circle
10	equations	298 - Simultaneous equations (advanced)
10	Solving simultaneous equations graphically	297 - Simultaneous equations (graphical)
11	Linear inequalities	180 - Inequalities: graphical y>a or x>a
		181 - Inequalities: graphical y>x+a
		182 - Inequalities: region
12	Quadratic inequalities	378 - Inequalities: quadratic
13	Sketching cubic and reciprocal graphs	344 - Types of graph: cubics
		346 - Types of graph: reciprocal
14	Translating graphs	323 - Transformations of graphs
15	Straight line graphs	194 - Linear graphs: find equation of a line
	5	195 - Linear graphs: equation through 2 points
16	Parallel and perpendicular lines	196 - Linear graphs: parallel lines
		197 - Linear graphs: perpendicular lines
		372 - Equation of a Tangent to a Circle
17	Pythagoras' Theorem	259 - Pythagoras: 3D
- /		260 - Pythagoras: rectangles/isosceles triangles
		263 - Pythagoras: distance points
18	Direct and inverse proportion	254 - Proportion: direct
10		255 - Proportion: inverse
10	Circle theorems	64 - Circle theorems – theorems
19		65 - Circle theorems – examples
		00 - Circle theorems – examples

20	Trigonometry	332 - Trigonometry: 3D
20	mbenenty	338 - Trigonometry: Sine graph
		339 - Trigonometry: Cosine graph
		340 - Trigonometry: Tangent graph
		333 - Trigonometry: sine rule (sides)
		334 - Trigonometry: sine rule (angles)
		334a - Trigonometry: sine rule (ambiguous case)
		335 - Trigonometry: cosine rule (sides)
		336 - Trigonometry: cosine rule (angles)
21	Rearranging equations	111 - Equations: involving fractions
		112 - Equations: fractional advanced
		112 - Equations: cross multiplication
22	Volume and surface area of 3D shapes	359 - Volume: cone
		360 - Volume: pyramid
		360a - Volume: Frustum
		361 - Volume: sphere
		313 - Surface area: sphere
		314 - Surface area: cone
		315 - Surface area: cylinders
23	Area under a graph and gradients	389 - Area under a Graph
		390a - Instantaneous Rate of Change

Expanding brackets and simplifying expressions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form ax + b, where $a \neq 0$ and $b \neq 0$, you create four terms. Two of these can usually be simplified by collecting like terms.

Examples

Example 1 Expand 4(3x-2)

4(3x - 2) = 12x - 8	Multiply everything inside the bracket by the 4 outside the bracket
---------------------	---

Example 2 Expand and simplify 3(x + 5) - 4(2x + 3)

3(x+5) - 4(2x+3) = 3x + 15 - 8x - 12	1 Expand each set of brackets separately by multiplying $(x + 5)$ by 3 and $(2x + 3)$ by -4
=3-5x	2 Simplify by collecting like terms: 3x - 8x = -5x and $15 - 12 = 3$

Example 3 Expand and simplify (x + 3)(x + 2)

(x+3)(x+2) = x(x+2) + 3(x+2)	1 Expand the brackets by multiplying $(x+2)$ by x and $(x+2)$ by 3
$= x^{2} + 2x + 3x + 6$	2 Simplify by collecting like terms:
= $x^{2} + 5x + 6$	2x + 3x = 5x

Example 4 Expand and simplify (x - 5)(2x + 3)

(x-5)(2x+3) = x(2x+3) - 5(2x+3)	1 Expand the brackets by multiplying $(2x+3)$ by x and $(2x+3)$ by -5
$= 2x^{2} + 3x - 10x - 15$ $= 2x^{2} - 7x - 15$	2 Simplify by collecting like terms: 3x - 10x = -7x

Corbettmaths.com videos of use:

- 15 Algebra: expanding three brackets
- 21 Algebraic Fractions: addition
- 22 Algebraic Fractions: division
- 23 Algebraic Fractions: Multiplication

Practice

1	Expand. a $3(2x - 1)$ c $-(3xy - 2y^2)$	b	$-2(5pq + 4q^2)$	Watch out! When multiplying (or dividing) positive and
2	Expand and simplify. a $7(3x+5) + 6(2x-8)$ c $9(3s+1) - 5(6s-10)$		8(5p-2) - 3(4p+9) 2(4x-3) - (3x+5)	negative numbers, if the signs are the same the answer is '+'; if the signs are different the answer is '-'.
3	Expand. $2\pi(4\pi + 8)$	L	$AL(5L^2 = 10)$	
	a $3x(4x+8)$ c $-2h(6h^2+11h-5)$		$4k(5k^2 - 12) -3s(4s^2 - 7s + 2)$	
	2// 0// 11// 5)	u	55(15 75 2)	
4	Expand and simplify. a $3(y^2 - 8) - 4(y^2 - 5)$ c $4p(2p - 1) - 3p(5p - 2)$		2x(x+5) + 3x(x-7) 3b(4b-3) - b(6b-9)	
5	Expand $\frac{1}{2}(2y-8)$			
6	Expand and simplify.			
	a $13-2(m+7)$	b	$5p(p^2+6p)-9p(2p-3)$	
7	The diagram shows a rectangle. Write down an expression, in terms of the rectangle. Show that the area of the rectangle can $21x^2 - 35x$		3x - 5	7x
8	Expand and simplify.			
	a $(x+4)(x+5)$	b	(x+7)(x+3)	
	c $(x+7)(x-2)$		(x+5)(x-5)	
	e $(2x+3)(x-1)$		(3x-2)(2x+1)	
	g $(5x-3)(2x-5)$ i $(3x+4y)(5y+6x)$		(3x-2)(7+4x) $(x+5)^2$	
	$k (2x-7)^2$		$\frac{(x+3)}{(4x-3y)^2}$	
_		-	··· ->)	
Ex	tend			
9	Expand and simplify $(x + 3)^2 + (x - 4)^2$			
10	Expand and simplify.			

a
$$\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)$$
 b $\left(x+\frac{1}{x}\right)^2$

Answers

1		6 <i>x</i> – 3	b	$-10pq - 8q^{2}$
	c	$-3xy + 2y^2$		
2	a	21x + 35 + 12x - 48 = 33x - 13		
	b	40p - 16 - 12p - 27 = 28p - 43		
	c	27s + 9 - 30s + 50 = -3s + 59 = 59	9 – 3,	S
	d	8x - 6 - 3x - 5 = 5x - 11		
3	0	$12x^2 + 24x$	h	$20k^3 - 48k$
5		12h + 24h $10h - 12h^3 - 22h^2$		$20\kappa = 48\kappa$ $21s^2 - 21s^3 - 6s$
	t	10/1 12/1 22/1	u	215 215 05
4	a	$-y^2 - 4$	b	$5x^2 - 11x$
		$2p - 7p^2$		$6b^{2}$
5	<i>y</i> –	4		
(-	-1 - 2m	L	5 - 3 + 12 - 2 + 27 - 27
6	a	-1 - 2m	D	$5p^3 + 12p^2 + 27p$
7	7x($(3x-5) = 21x^2 - 35x$		
8	a	$x^2 + 9x + 20$	b	$x^2 + 10x + 21$
	c	$x^2 + 5x - 14$		$x^2 - 25$
		$2x^2 + x - 3$		$6x^2 - x - 2$
	-	$10x^2 - 31x + 15$		$12x^2 + 13x - 14$
		$18x^2 + 39xy + 20y^2$	•	$x^2 + 10x + 25$
	k	$4x^2 - 28x + 49$	1	$16x^2 - 24xy + 9y^2$

9
$$2x^2 - 2x + 25$$

10 a
$$x^2 - 1 - \frac{2}{x^2}$$
 b $x^2 + 2 + \frac{1}{x^2}$

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50} = \sqrt{25 \times 2}$	1 Choose two numbers that are factors of 50. One of the factors must be a square number
$= \sqrt{25} \times \sqrt{2}$ $= 5 \times \sqrt{2}$ $= 5\sqrt{2}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ 3 Use $\sqrt{25} = 5$

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=7\times\sqrt{3}-2\times2\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ 3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$=7\sqrt{3}-4\sqrt{3}$ $=3\sqrt{3}$	4 Collect like terms

Corbettmaths.com videos of use: 305 - Surds: intro, rules, simplifying 307 - Surds: rationalising denominators

308 - Surds: expanding brackets

Example 3	Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$		
	$ \left(\sqrt{7} + \sqrt{2}\right)\left(\sqrt{7} - \sqrt{2}\right) $ $= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4} $	1	Expand the brackets. A common mistake here is to write $\left(\sqrt{7}\right)^2 = 49$
	= 7 - 2 = 5	2	Collect like terms: $-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$

Example 4 Rationalise
$$\frac{1}{\sqrt{3}}$$

•	
$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	1 Multiply the numerator and denominator by $\sqrt{3}$
$=\frac{1\times\sqrt{3}}{\sqrt{9}}$	2 Use $\sqrt{9} = 3$
$=\frac{\sqrt{3}}{3}$	

Example 5	Rationalise and simplify	$\frac{\sqrt{2}}{\sqrt{12}}$
		V12

$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$	1 Multiply the numerator and denominator by $\sqrt{12}$
$=\frac{\sqrt{2}\times\sqrt{4\times3}}{12}$	2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12. One of the factors must be a square number
$=\frac{2\sqrt{2}\sqrt{3}}{12}$	3 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ 4 Use $\sqrt{4} = 2$
$=\frac{\sqrt{2}\sqrt{3}}{6}$	5 Simplify the fraction: $\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 6	Rationalise and simplify $\frac{3}{2+\sqrt{5}}$		
	$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1	Multiply the numerator and denominator by $2 - \sqrt{5}$
	$=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$	2	Expand the brackets
	$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$	3	Simplify the fraction
	$4 + 2\sqrt{5} - 2\sqrt{5} - 5$ $= \frac{6 - 3\sqrt{5}}{-1}$ $= 3\sqrt{5} - 6$	4	Divide the numerator by -1 Remember to change the sign of all terms when dividing by -1

Practice

1	Simplify.		Hint
	a $\sqrt{45}$	b $\sqrt{125}$	One of the two
	$\mathbf{c} \sqrt{48}$	d $\sqrt{175}$	numbers you choose at the start
	e $\sqrt{300}$	$f \sqrt{28}$	must be a square
	$\mathbf{g} = \sqrt{72}$	h $\sqrt{162}$	number.

- 2 Simplify.
 - a $\sqrt{72} + \sqrt{162}$
 - $\mathbf{c} = \sqrt{50} \sqrt{8}$
 - e $2\sqrt{28} + \sqrt{28}$

b
$$\sqrt{45} - 2\sqrt{5}$$

d $\sqrt{75} - \sqrt{48}$
f $2\sqrt{12} - \sqrt{12} + \sqrt{27}$

Watch out!

Check you have chosen the highest square number at the start.

3 Expand and simplify.

- a $(\sqrt{2} + \sqrt{3})(\sqrt{2} \sqrt{3})$ b $(3 + \sqrt{3})(5 - \sqrt{12})$ c $(4 - \sqrt{5})(\sqrt{45} + 2)$ d $(5 + \sqrt{2})(6 - \sqrt{8})$
- Pearson

4 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$
b $\frac{1}{\sqrt{11}}$ c $\frac{2}{\sqrt{7}}$ d $\frac{2}{\sqrt{8}}$ e $\frac{2}{\sqrt{2}}$ f $\frac{5}{\sqrt{5}}$ g $\frac{\sqrt{8}}{\sqrt{24}}$ h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$ **c** $\frac{6}{5-\sqrt{2}}$

Extend

- 6 Expand and simplify $(\sqrt{x} + \sqrt{y})(\sqrt{x} \sqrt{y})$
- 7 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Answers

1	a	3√5	b	5√5		
	c	$4\sqrt{3}$	d	5√7		
	e	$10\sqrt{3}$	f	2√7		
	g	6√2	h	9√2		
2	0	15√2	b	$\sqrt{5}$		
2		$3\sqrt{2}$		$\sqrt{3}$		
	e	6√7	Ι	5√3		
3	a	-1	b	$9 - \sqrt{3}$		
		$10\sqrt{5}-7$		$26 - 4\sqrt{2}$		
4	а	$\frac{\sqrt{5}}{5}$	b	$\frac{\sqrt{11}}{11}$		
-		5		11		
	c	$\frac{2\sqrt{7}}{7}$	d	$\frac{\sqrt{2}}{2}$		
	e	$\frac{2\sqrt{7}}{7}$ $\sqrt{2}$ $\frac{\sqrt{3}}{3}$		$\sqrt{5}$		
	-	√2 √3				
	g	$\frac{\sqrt{3}}{3}$	h	$\frac{1}{3}$		
5	a	$\frac{3+\sqrt{5}}{4}$	b	$\frac{2(4-\sqrt{3})}{13}$	c	$\frac{6(5+\sqrt{2})}{23}$
		4		13		23
6	x -	y				
7	а	$3+2\sqrt{2}$	b	$\frac{\sqrt{x} + \sqrt{y}}{x - y}$		
,		5 1 2 1 2	~	x - y		

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $a^m \times a^n = a^{m+n}$
- $\frac{a^m}{a^n} = a^{m-n}$ $(a^m)^n = a^{mn}$ $a^0 = 1$

- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^n$$

•
$$a^{-m} = \frac{1}{a^m}$$

The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$. •

Examples

Evaluate 10⁰ Example 1

$10^0 = 1$	Any value raised to the power of zero is equal to 1
------------	---

Example 2 Evaluate $9^{\frac{1}{2}}$

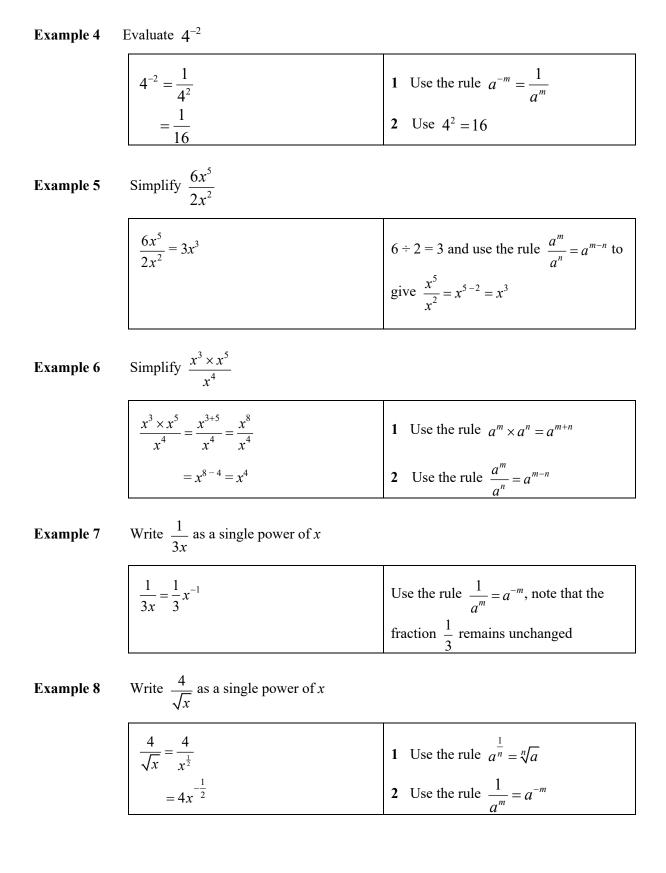
$9^{\frac{1}{2}} = \sqrt{9}$ $= 3$	Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
------------------------------------	--

Evaluate $27^{\frac{2}{3}}$ Example 3

$27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^2$	1 Use the rule $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$
$= 3^{2}$ = 9	2 Use $\sqrt[3]{27} = 3$

Corbettmaths.com videos of use:

- 173 Indices: fractional
- 174 Indices: laws of
- 175 Indices: negative



Practice

1	Evaluate. a 14 ⁰	b	3 ⁰	c	5^{0}	d	x^0
2	Evaluate. a $49^{\frac{1}{2}}$	b	$64^{\frac{1}{3}}$	c	$125^{\frac{1}{3}}$	d	$16^{\frac{1}{4}}$
3	Evaluate. a $25^{\frac{3}{2}}$	b	$8^{\frac{5}{3}}$	c	$49^{\frac{3}{2}}$	d	$16^{\frac{3}{4}}$
4	Evaluate. a 5^{-2}	b	4 ⁻³	c	2 ⁻⁵	d	6 ⁻²
5	Simplify. a $\frac{3x^2 \times x^3}{2x^2}$	b	$\frac{10x^5}{2x^2 \times x}$				
	$\mathbf{c} \qquad \frac{3x \times 2x^3}{2x^3}$	d	$\frac{7x^3y^2}{14x^5y}$		Watch out! Remember th	at	
	$e \qquad \frac{y^2}{y^{\frac{1}{2}} \times y}$ $g \qquad \frac{(2x^2)^3}{y^{\frac{1}{2}}}$	f	$\frac{c^{\frac{1}{2}}}{c^{2} \times c^{\frac{3}{2}}}$		any value rais the power of is 1. This is the rule $a^0 = 1$.	sed to zero	
6	$\mathbf{g} = \frac{(2x^0)}{4x^0}$ Evaluate.	h	$\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^3}$				
U	a $4^{-\frac{1}{2}}$		$27^{-\frac{2}{3}}$	c	$9^{-\frac{1}{2}} \times 2^{3}$		
	d $16^{\frac{1}{4}} \times 2^{-3}$	e	$\left(\frac{9}{16}\right)^{-\frac{1}{2}}$	f	$\left(\frac{27}{64}\right)^{-\frac{2}{3}}$		
7	Write the following as a	single	power of <i>x</i> .				
	a $\frac{1}{x}$	b	$\frac{1}{x^7}$	c	$\sqrt[4]{x}$		
	d $\sqrt[5]{x^2}$	e	$\frac{1}{\sqrt[3]{x}}$	f	$\frac{1}{\sqrt[3]{x^2}}$		

- 8 Write the following without negative or fractional powers.
 - **a** x^{-3} **b** x^{0} **c** $x^{\frac{1}{5}}$ **d** $x^{\frac{2}{5}}$ **e** $x^{-\frac{1}{2}}$ **f** $x^{-\frac{3}{4}}$

Wr	ite the foll	lowing in the form ax^n .		
a	$5\sqrt{x}$	b $\frac{2}{x^3}$	c	$\frac{1}{3x^4}$
d	$\frac{2}{\sqrt{x}}$	$e \qquad \frac{4}{\sqrt[3]{x}}$	f	3

Extend

9

10 Write as sums of powers of *x*.

a
$$\frac{x^5+1}{x^2}$$
 b $x^2\left(x+\frac{1}{x}\right)$ **c** $x^{-4}\left(x^2+\frac{1}{x^3}\right)$

Answers

1	a	1	b	1	c	1	d	1
2	a	7	b	4	c	5	d	2
3	a	125	b	32	c	343	d	8
4	a	$\frac{1}{25}$	b	$\frac{1}{64}$	с	$\frac{1}{32}$	d	$\frac{1}{36}$
5	a	$\frac{3x^3}{2}$		$5x^2$				
	c	3 <i>x</i>	d	$\frac{y}{2x^2}$				
	e g	$\frac{y^{\frac{1}{2}}}{2x^6}$	f h	c^{-3}				
6	a	$\frac{1}{2}$		$\frac{1}{9}$	c	$\frac{8}{3}$		
	d	$\frac{1}{4}$	e	$\frac{4}{3}$	f	$\frac{16}{9}$		
		x^{-1}		x^{-7}	c	$x^{\frac{1}{4}}$ $x^{-\frac{2}{3}}$		
	d	$x^{\frac{2}{5}}$	e	$x^{-\frac{1}{3}}$	f	$x^{-\frac{2}{3}}$		
8	a	$\frac{1}{x^3}$	b	1	c	$\sqrt[5]{x}$		
		$\sqrt[5]{x^2}$		$\frac{1}{\sqrt{x}}$		$\frac{1}{\sqrt[4]{x^3}}$		
9	a	$5x^{\frac{1}{2}}$	b	2 <i>x</i> ⁻³		$\frac{1}{3}x^{-4}$		
	d	$2x^{-\frac{1}{2}}$	e	$4x^{-\frac{1}{3}}$	f	$3x^0$		
10	a	$x^3 + x^{-2}$	b	$x^3 + x$	c	$x^{-2} + x^{-7}$		

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is ac.
- An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y).

Examples

Example 1 Factorise $15x^2y^3 + 9x^4y$

$15x^2y^3 + 9x^4y = 3x^2y(5y^2 + 3x^2)$	The highest common factor is $3x^2y$. So take $3x^2y$ outside the brackets and then divide each term by $3x^2y$ to find the terms in the brackets
---	---

Example 2 Factorise $4x^2 - 25y^2$

$4x^2 - 25y^2 = (2x + 5y)(2x - 5y)$	This is the difference of two squares as the two terms can be written as $(2x)^2$ and $(5y)^2$
-------------------------------------	---

Example 3 Factorise $x^2 + 3x - 10$

b = 3, ac = -10	1 Work out the two factors of ac = -10 which add to give $b = 3(5 and -2)$
So $x^2 + 3x - 10 = x^2 + 5x - 2x - 10$	 2 Rewrite the b term (3x) using these two factors
=x(x+5)-2(x+5)	3 Factorise the first two terms and the last two terms
= (x+5)(x-2)	4 $(x+5)$ is a factor of both terms

Corbettmaths.com videos of use: 119a - Factorisation: splitting the middle 120 - Factorisation: difference of 2 squares 24 - Algebraic Fractions: Simplifying

Example 4 Factorise $6x^2 - 11x - 10$

b = -11, ac = -60	1 Work out the two factors of
	ac = -60 which add to give $b = -11$
So	(-15 and 4)
$6x^2 - 11x - 10 = 6x^2 - 15x + 4x - 10$	2 Rewrite the <i>b</i> term $(-11x)$ using
	these two factors
= 3x(2x-5) + 2(2x-5)	3 Factorise the first two terms and the
	last two terms
=(2x-5)(3x+2)	4 $(2x-5)$ is a factor of both terms

Simplify $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$

$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$	1 Factorise the numerator and the denominator
For the numerator: b = -4, $ac = -21$	2 Work out the two factors of $ac = -21$ which add to give $b = -4$ (-7 and 3)
So $x^2 - 4x - 21 = x^2 - 7x + 3x - 21$	3 Rewrite the <i>b</i> term $(-4x)$ using these two factors
=x(x-7)+3(x-7)	4 Factorise the first two terms and the last two terms
=(x-7)(x+3)	5 $(x-7)$ is a factor of both terms
For the denominator: b = 9, ac = 18	6 Work out the two factors of ac = 18 which add to give $b = 9(6 and 3)$
So $2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$	7 Rewrite the <i>b</i> term (9 <i>x</i>) using these two factors
= 2x(x+3) + 3(x+3)	8 Factorise the first two terms and the last two terms
=(x+3)(2x+3) So	9 $(x+3)$ is a factor of both terms
$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9} = \frac{(x - 7)(x + 3)}{(x + 3)(2x + 3)}$ $= \frac{x - 7}{x - 7}$	10 $(x + 3)$ is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1
2x+3	

Practice

1	Factorise.			
	a	$6x^4y^3 - 10x^3y^4$	b	$21a^3b^5 + 35a^5b^2$
	c	$25x^2y^2 - 10x^3y^2 + 15x^2y^3$		
2	Fac	torise		
	a	$x^2 + 7x + 12$	b	$x^2 + 5x - 14$
	c	$x^2 - 11x + 30$	d	$x^2 - 5x - 24$
	e	$x^2 - 7x - 18$	f	$x^2 + x - 20$
	g	$x^2 - 3x - 40$	h	$x^2 + 3x - 28$
3	Fac	torise		
	a	$36x^2 - 49y^2$	b	$4x^2 - 81y^2$
	c	$18a^2 - 200b^2c^2$		

Hint

Take the highest common factor outside the bracket.

Factorise 4

a	$2x^2 + x - 3$	b	$6x^2 + 17x + 5$
c	$2x^2 + 7x + 3$	d	$9x^2 - 15x + 4$
e	$10x^2 + 21x + 9$	f	$12x^2 - 38x + 20$

Simplify the algebraic fractions. 5

a	$\frac{2x^2 + 4x}{x^2 - x}$	b	$\frac{x^2+3x}{x^2+2x-3}$
c	$\frac{x^2-2x-8}{x^2-4x}$	d	$\frac{x^2 - 5x}{x^2 - 25}$
e	$\frac{x^2-x-12}{x^2-4x}$	f	$\frac{2x^2 + 14x}{2x^2 + 4x - 70}$

Simplify 6

a
$$\frac{9x^2 - 16}{3x^2 + 17x - 28}$$

b $\frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$
c $\frac{4 - 25x^2}{10x^2 - 11x - 6}$
d $\frac{6x^2 - x - 1}{2x^2 + 7x - 4}$

Extend

7 Simplify
$$\sqrt{x^2 + 10x + 25}$$

8 Simplify
$$\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$$

Answers

1	a	$2x^3y^3(3x-5y)$	b	$7a^3b^2(3b^3+5a^2)$
	c	$5x^2y^2(5-2x+3y)$		
2		(x+3)(x+4)		(x+7)(x-2)
		(x-5)(x-6)		(x-8)(x+3)
		(x-9)(x+2)		(x+5)(x-4)
	g	(x-8)(x+5)	h	(x+7)(x-4)
2		$((\ldots, 7_{2}))((\ldots, 7_{2}))$	L	$(2\alpha - 0\alpha)(2\alpha + 0\alpha)$
3		(6x - 7y)(6x + 7y) 2(2 x - 10 h x)(2 x + 10 h x)	D	(2x-9y)(2x+9y)
	C	2(3a - 10bc)(3a + 10bc)		
4	a	(x-1)(2x+3)	b	(3x+1)(2x+5)
	c	(2x+1)(x+3)	d	(3x-1)(3x-4)
	e	(5x+3)(2x+3)		2(3x-2)(2x-5)
5	a	2(x+2)	b	x
3	a	$\frac{2(x+2)}{x-1}$	D	$\frac{x}{x-1}$
	с	$\frac{x+2}{2}$	d	x
	ι	x	u	$\frac{x}{x+5}$
	e	$\underline{x+3}$	f	x
	L	\overline{x}	1	$\frac{x}{x-5}$
6	a	$\frac{3x+4}{x+7}$	b	$\frac{2x+3}{3x-2}$
v	a	x+7	U	3x - 2
	с	2 - 5x	d	$\frac{3x+1}{x}$
	U	$\frac{2-5x}{2x-3}$	u	$\overline{x+4}$

7 (x+5)

$$8 \qquad \frac{4(x+2)}{x-2}$$

Completing the square

A LEVEL LINKS

Corbettmaths.com videos of use:

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

• Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x+q)^2 + r$

Complete the square for the quadratic expression $x^2 + 6x - 2$

If $a \neq 1$, then factorise using *a* as a common factor. ٠

Examples

Example 1

$x^2 + 6x - 2$	1 Write $x^2 + bx + c$ in the form
$=(x+3)^2-9-2$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$
$=(x+3)^2-11$	2 Simplify

Example 2	Write $2x^2 - 5x + 1$ in the form $p(x+q)^2 + r$
-----------	--

$2x^2 - 5x + 1$	1 Before completing the square write $ax^2 + bx + c$ in the form
$= 2\left(x^2 - \frac{5}{2}x\right) + 1$	$a\left(x^{2} + \frac{b}{a}x\right) + c$ 2 Now complete the square by writing $x^{2} - \frac{5}{2}x$ in the form
$= 2\left[\left(x-\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2\right]+1$	$\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$
$= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1$	3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^2$ by the factor
	of 2
$= 2\left(x-\frac{5}{4}\right)^2 - \frac{17}{8}$	4 Simplify

Practice

- 1 Write the following quadratic expressions in the form $(x + p)^2 + q$
 - a $x^2 + 4x + 3$ b $x^2 10x 3$ c $x^2 8x$ d $x^2 + 6x$ e $x^2 2x + 7$ f $x^2 + 3x 2$
- 2 Write the following quadratic expressions in the form $p(x+q)^2 + r$ a $2x^2 - 8x - 16$ b $4x^2 - 8x - 16$ c $3x^2 + 12x - 9$ d $2x^2 + 6x - 8$
- **3** Complete the square.

a	$2x^2 + 3x + 6$	b	$3x^2 - 2x$
c	$5x^2 + 3x$	d	$3x^2 + 5x + 3$

Extend

4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

Answers

1	a	$(x+2)^2 - 1$	b	$(x-5)^2-28$
	c	$(x-4)^2 - 16$	d	$(x+3)^2 - 9$
	e	$(x-1)^2 + 6$	f	$\left(x+\frac{3}{2}\right)^2-\frac{17}{4}$
2	a	$2(x-2)^2-24$	b	$4(x-1)^2-20$
	c	$3(x+2)^2-21$	d	$2\left(x+\frac{3}{2}\right)^2 - \frac{25}{2}$
3	a	$2\left(x+\frac{3}{4}\right)^2+\frac{39}{8}$	b	$3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}$
	c	$5\left(x+\frac{3}{10}\right)^2-\frac{9}{20}$	d	$3\left(x+\frac{5}{6}\right)^2+\frac{11}{12}$

4
$$(5x+3)^2+3$$

Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose products is *ac*.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

$5x^2 = 15x$	1 Rearrange the equation so that all of
$5x^2 - 15x = 0$	the terms are on one side of the equation and it is equal to zero. Do not divide both sides by <i>x</i> as this
	would lose the solution $x = 0$.
5x(x-3)=0	2 Factorise the quadratic equation.
	5x is a common factor.
So $5x = 0$ or $(x - 3) = 0$	3 When two values multiply to make
	zero, at least one of the values must be zero.
Therefore $x = 0$ or $x = 3$	4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^2 + 7x + 12 = 0$	1 Factorise the quadratic equation. Work out the two factors of $ac = 12$
1 7 10	
b = 7, ac = 12	which add to give you $b = 7$.
	(4 and 3)
$x^2 + 4x + 3x + 12 = 0$	2 Rewrite the <i>b</i> term $(7x)$ using these
	two factors.
x(x+4) + 3(x+4) = 0	3 Factorise the first two terms and the
	last two terms.
(x+4)(x+3) = 0	4 $(x+4)$ is a factor of both terms.
So $(x + 4) = 0$ or $(x + 3) = 0$	5 When two values multiply to make
	zero, at least one of the values must
	be zero.
There for a former 2	
Therefore $x = -4$ or $x = -3$	6 Solve these two equations.

Corbettmaths.com videos of use:

266 - Quadratics: solving (factorising)

Example 3 Solve $9x^2 - 16 = 0$

$9x^2 - 16 = 0$	1 Factorise the quadratic equation.
(3x+4)(3x-4) = 0	This is the difference of two squares
	as the two terms are $(3x)^2$ and $(4)^2$.
So $(3x + 4) = 0$ or $(3x - 4) = 0$	2 When two values multiply to make
	zero, at least one of the values must
4 4	be zero.
$x = -\frac{1}{3}$ or $x = \frac{1}{3}$	3 Solve these two equations.

Example 4 Solve $2x^2 - 5x - 12 = 0$

	-
b = -5, ac = -24	1 Factorise the quadratic equation. Work out the two factors of $ac = -24$ which add to give you $b = -5$. (-8 and 3)
So $2x^2 - 8x + 3x - 12 = 0$	2 Rewrite the <i>b</i> term $(-5x)$ using these two factors.
2x(x-4) + 3(x-4) = 0	3 Factorise the first two terms and the last two terms.
(x-4)(2x+3) = 0	4 $(x-4)$ is a factor of both terms.
So $(x-4) = 0$ or $(2x+3) = 0$	5 When two values multiply to make zero, at least one of the values must
$x = 4$ or $x = -\frac{3}{2}$	be zero.6 Solve these two equations.

Practice

Sol	Solve					
a	$6x^2 + 4x = 0$	b	$28x^2 - 21x = 0$			
c	$x^2 + 7x + 10 = 0$	d	$x^2 - 5x + 6 = 0$			
e	$x^2 - 3x - 4 = 0$	f	$x^2 + 3x - 10 = 0$			
g	$x^2 - 10x + 24 = 0$	h	$x^2 - 36 = 0$			
i	$x^2 + 3x - 28 = 0$	j	$x^2-6x+9=0$			
k	$2x^2 - 7x - 4 = 0$	l	$3x^2 - 13x - 10 =$			
	a c e g i	Solve a $6x^2 + 4x = 0$ c $x^2 + 7x + 10 = 0$ e $x^2 - 3x - 4 = 0$ g $x^2 - 10x + 24 = 0$ i $x^2 + 3x - 28 = 0$ k $2x^2 - 7x - 4 = 0$	a $6x^2 + 4x = 0$ b b c $x^2 + 7x + 10 = 0$ d d e $x^2 - 3x - 4 = 0$ f f g $x^2 - 10x + 24 = 0$ h i $x^2 + 3x - 28 = 0$ j			

2 Solve

- a $x^2 3x = 10$ c $x^2 + 5x = 24$ e x(x+2) = 2x + 25g $x(3x+1) = x^2 + 15$
- **b** $x^2 3 = 2x$ **d** $x^2 - 42 = x$ **f** $x^2 - 30 = 3x - 2$ **h** 3x(x - 1) = 2(x + 1)

0

- Hint
- Get all terms onto one side of the equation.

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Corbettmaths.com videos of use:

267a - Quadratics: solving (completing the square)

Key points

• Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 5 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$x^2 + 6x + 4 = 0$	1 Write $x^2 + bx + c = 0$ in the form
$(x+3)^2 - 9 + 4 = 0$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$
$(x+3)^2 - 5 = 0$ (x+3)^2 = 5	2 Simplify.
$(x+3)^2 = 5$	3 Rearrange the equation to work out
E E	<i>x</i>. First, add 5 to both sides.4 Square root both sides.
$x + 3 = \pm \sqrt{5}$	*
$x = \pm \sqrt{5} - 3$	Remember that the square root of a value gives two answers.5 Subtract 3 from both sides to solve
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$	the equation.6 Write down both solutions.

Example 6 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form.

 $2x^{2} - 7x + 4 = 0$ $2\left(x^{2} - \frac{7}{2}x\right) + 4 = 0$ $2\left[\left(x - \frac{7}{4}\right)^{2} - \left(\frac{7}{4}\right)^{2}\right] + 4 = 0$ $2\left[\left(x - \frac{7}{4}\right)^{2} - \left(\frac{7}{4}\right)^{2}\right] + 4 = 0$ $2\left(x - \frac{7}{4}\right)^{2} - \frac{49}{8} + 4 = 0$ $2\left(x - \frac{7}{4}\right)^{2} - \frac{17}{8} = 0$ 3 Expand the square brackets. 4 Simplify.

$$2\left(x-\frac{7}{4}\right)^{2} = \frac{17}{8}$$
(continued on next page)

$$2\left(x-\frac{7}{4}\right)^{2} = \frac{17}{8}$$
(x - $\frac{7}{4}\right)^{2} = \frac{17}{16}$
(x - $\frac{17}{4}\right)^{2} = \frac{17}{16}$
(x

Practice

3 Solve by completing the square.

a	$x^2 - 4x - 3 = 0$	b	$x^2 - 10x + 4 = 0$
c	$x^2 + 8x - 5 = 0$		$x^2 - 2x - 6 = 0$
e	$2x^2 + 8x - 5 = 0$	f	$5x^2 + 3x - 4 = 0$

4 Solve by completing the square.

- **a** (x-4)(x+2) = 5
- **b** $2x^2 + 6x 7 = 0$
- **c** $x^2 5x + 3 = 0$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Corbettmaths.com videos of use:

267 - Quadratics: formula

Key points

- Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for *a*, *b* and *c*.

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$a = 1, b = 6, c = 4$$
1Identify a, b and c and write down
the formula.
Remember that $-b \pm \sqrt{b^2 - 4ac}$ is
all over $2a$, not just part of it. $x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$ 2Substitute $a = 1, b = 6, c = 4$ into the
formula. $x = \frac{-6 \pm \sqrt{20}}{2}$ 3Simplify. The denominator is 2, but
this is only because $a = 1$. The
denominator will not always be 2. $x = \frac{-6 \pm 2\sqrt{5}}{2}$ 4Simplify $\sqrt{20}$.
 $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$ $x = -3 \pm \sqrt{5}$ 5Simplify by dividing numerator and
denominator by 2.So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$ 6Write down both the solutions.

$a = 3, b = -7, c = -2$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> , making sure you get the signs right and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$	2 Substitute $a = 3, b = -7, c = -2$ into the formula.
$x = \frac{7 \pm \sqrt{73}}{6}$ So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$	 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2. 4 Write down both the solutions.

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

Practice

- 5 Solve, giving your solutions in surd form. **a** $3x^2 + 6x + 2 = 0$ **b** $2x^2 - 4x - 7 = 0$
- 6 Solve the equation $x^2 7x + 2 = 0$ Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where *a*, *b* and *c* are integers.
- 7 Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form.

Hint
Get all terms onto one side of the equation.

Extend

- 8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
 - **a** 4x(x-1) = 3x-2
 - **b** $10 = (x+1)^2$
 - **c** x(3x-1) = 10

Answers

1 a
$$x = 0$$
 or $x = -\frac{2}{3}$
c $x = -5$ or $x = -2$
e $x = -1$ or $x = 4$
g $x = 4$ or $x = 6$
i $x = -7$ or $x = 4$
k $x = -\frac{1}{2}$ or $x = 5$
2 a $x = -2$ or $x = 5$
b $x = 0$ or $x = \frac{3}{4}$
d $x = 0$ or $x = \frac{3}{4}$
d $x = 2$ or $x = 3$
f $x = -5$ or $x = 2$
h $x = -6$ or $x = 6$
j $x = 3$
h $x = -\frac{2}{3}$ or $x = 5$

a

$$x = -2$$
 or $x = 3$
 b
 $x = -1$ or $x = 3$

 c
 $x = -8$ or $x = 3$
 d
 $x = -6$ or $x = 7$

 e
 $x = -5$ or $x = 5$
 f
 $x = -4$ or $x = 7$

 g
 $x = -3$ or $x = 2$
 $\frac{1}{2}$
 h
 $x = -\frac{1}{3}$ or $x = 2$

3 a
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$ b $x = 5 + \sqrt{21}$ or $x = 5 - \sqrt{21}$
c $x = -4 + \sqrt{21}$ or $x = -4 - \sqrt{21}$ d $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$
e $x = -2 + \sqrt{6.5}$ or $x = -2 - \sqrt{6.5}$ f $x = \frac{-3 + \sqrt{89}}{10}$ or $x = \frac{-3 - \sqrt{89}}{10}$

4 **a**
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$ **b** $x = \frac{-3 + \sqrt{23}}{2}$ or $x = \frac{-3 - \sqrt{23}}{2}$
c $x = \frac{5 + \sqrt{13}}{2}$ or $x = \frac{5 - \sqrt{13}}{2}$

5 **a**
$$x = -1 + \frac{\sqrt{3}}{3}$$
 or $x = -1 - \frac{\sqrt{3}}{3}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$

6
$$x = \frac{7 + \sqrt{41}}{2}$$
 or $x = \frac{7 - \sqrt{41}}{2}$

7
$$x = \frac{-3 + \sqrt{89}}{20}$$
 or $x = \frac{-3 - \sqrt{89}}{20}$

8 **a**
$$x = \frac{7 + \sqrt{17}}{8}$$
 or $x = \frac{7 - \sqrt{17}}{8}$
b $x = -1 + \sqrt{10}$ or $x = -1 - \sqrt{10}$
c $x = -1 \frac{2}{3}$ or $x = 2$

Sketching quadratic graphs

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

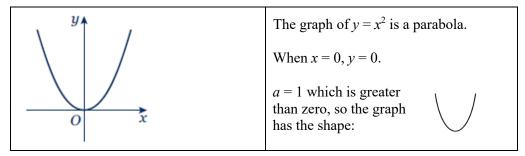
- The graph of the quadratic function $y = ax^2 + bx + c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and • a shape as shown.

To sketch the graph of a function, find the points where the graph intersects the axes. •

- To find where the curve intersects the *y*-axis substitute x = 0 into the function.
- To find where the curve intersects the x-axis substitute y = 0 into the function. •
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at • these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic • curve (parabola) you can use the completed square form of the function.

Examples

Example 1 Sketch the graph of $y = x^2$.

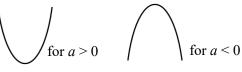


Sketch the graph of $y = x^2 - x - 6$. Example 2

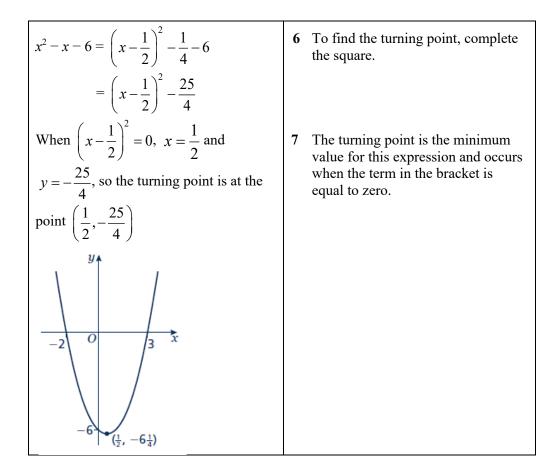
When $x = 0$, $y = 0^2 - 0 - 6 = -6$ So the graph intersects the <i>y</i> -axis at	1 Find where the graph intersects the y-axis by substituting $x = 0$.
(0, -6) When $y = 0$, $x^2 - x - 6 = 0$	2 Find where the graph intersects the x-axis by substituting $y = 0$.
(x+2)(x-3)=0	3 Solve the equation by factorising.
x = -2 or x = 3	4 Solve $(x+2) = 0$ and $(x-3) = 0$.
So, the graph intersects the <i>x</i> -axis at $(-2, 0)$ and $(3, 0)$	5 $a = 1$ which is greater than zero, so the graph has the shape:
	<i>(continued on next page)</i>

Corbettmaths.com videos of use:

- 265 Quadratic graphs: sketching using key points
- 371 Quadratic graph (completing the square)



$$\int$$
 for $a < 0$



Practice

- 1 Sketch the graph of $y = -x^2$.
- 2 Sketch each graph, labelling where the curve crosses the axes. **a** y = (x+2)(x-1) **b** y = x(x-3) **c** y = (x+1)(x+5)
- **3** Sketch each graph, labelling where the curve crosses the axes.

a	$y = x^2 - x - 6$	b	$y = x^2 - 5x + 4$	c	$y = x^2 - 4$
d	$y = x^2 + 4x$	e	$y = 9 - x^2$	f	$y = x^2 + 2x - 3$

4 Sketch the graph of $y = 2x^2 + 5x - 3$, labelling where the curve crosses the axes.

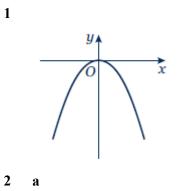
Extend

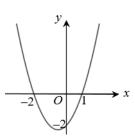
5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.

a $y = x^2 - 5x + 6$ **b** $y = -x^2 + 7x - 12$ **c** $y = -x^2 + 4x$

6 Sketch the graph of $y = x^2 + 2x + 1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

Answers

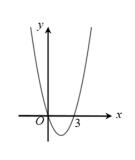


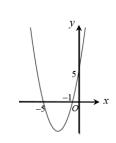


b

b

e

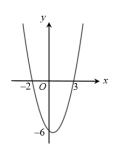


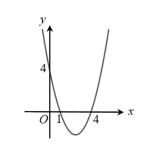


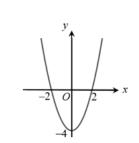
c

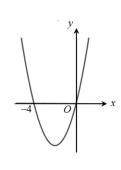
c

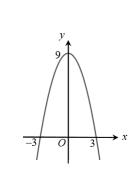
f

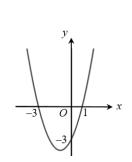




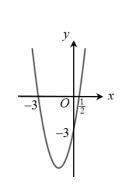


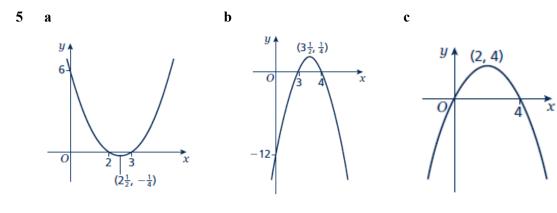


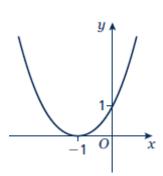




4







Line of symmetry at x = -1.

Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Corbettmaths.com videos of use:

295 - Simultaneous equations (elimination)

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations 3x + y = 5 and x + y = 1

3x + y = 5 $- x + y = 1$ $2x = 4$ So $x = 2$	1 Subtract the second equation from the first equation to eliminate the <i>y</i> term.
Using $x + y = 1$ 2 + y = 1 So $y = -1$	2 To find the value of y , substitute $x = 2$ into one of the original equations.
Check: equation 1: $3 \times 2 + (-1) = 5$ YES equation 2: $2 + (-1) = 1$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 2 Solve x + 2y = 13 and 5x - 2y = 5 simultaneously.

x + 2y = 13 + 5x - 2y = 5 6x = 18 So x = 3	1 Add the two equations together to eliminate the <i>y</i> term.
Using $x + 2y = 13$ 3 + 2y = 13 So $y = 5$	2 To find the value of y , substitute $x = 3$ into one of the original equations.
Check: equation 1: $3 + 2 \times 5 = 13$ YES equation 2: $5 \times 3 - 2 \times 5 = 5$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 3	Solve $2x + 3y = 2$ and $5x + 4y = 12$ simultaneously.					
	$(2x + 3y = 2) \times 4 \rightarrow \qquad 8x + 12y = 8$ $(5x + 4y = 12) \times 3 \rightarrow \qquad 15x + 12y = 36$ 7x = 28 So $x = 4$	1	Multiply the first equation by 4 and the second equation by 3 to make the coefficient of y the same for both equations. Then subtract the first equation from the second equation to eliminate the y term.			
	Using $2x + 3y = 2$ $2 \times 4 + 3y = 2$ So $y = -2$	2	To find the value of y , substitute $x = 4$ into one of the original equations.			
	Check: equation 1: $2 \times 4 + 3 \times (-2) = 2$ YES equation 2: $5 \times 4 + 4 \times (-2) = 12$ YES	3	Substitute the values of x and y into both equations to check your answers.			

Practice

x - 3y = 9

Solve these simultaneous equations.

1	4x + y = 8	2	3x + y = 7
	x + y = 5		3x + 2y = 5
3	4x + y = 3 $3x - y = 11$	4	3x + 4y = 7 $x - 4y = 5$
5	2x + y = 11	6	2x + 3y = 11

Solving linear simultaneous equations using the substitution method

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous Textbook: Pure Year 1, 3.1 Linear simultaneous equations Corbettmaths.com videos of use:

296 - Simultaneous equations (substitution, both linear)

Key points

• The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 4 Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14

5x + 3(2x + 1) = 14 5x + 6x + 3 = 14 11x + 3 = 14 11x = 11 So $x = 1$	 Substitute 2x + 1 for y into the second equation. Expand the brackets and simplify. Work out the value of x.
Using $y = 2x + 1$ $y = 2 \times 1 + 1$ So $y = 3$	4 To find the value of y , substitute $x = 1$ into one of the original equations.
Check: equation 1: $3 = 2 \times 1 + 1$ YES equation 2: $5 \times 1 + 3 \times 3 = 14$ YES	5 Substitute the values of x and y into both equations to check your answers.

y = 2x - 164x + 3(2x - 16) = -3	 Rearrange the first equation. Substitute 2x - 16 for y into the second equation.
4x + 6x - 48 = -3 $10x - 48 = -3$	3 Expand the brackets and simplify.
10x = 45	4 Work out the value of <i>x</i> .
So $x = 4\frac{1}{2}$	
Using $y = 2x - 16$ $y = 2 \times 4\frac{1}{2} - 16$	5 To find the value of y, substitute $x = 4\frac{1}{2}$ into one of the original
So $y = -7$	equations.
Check: equation 1: $2 \times 4\frac{1}{2} - (-7) = 16$ YES equation 2: $4 \times 4\frac{1}{2} + 3 \times (-7) = -3$ YES	6 Substitute the values of x and y into both equations to check your answers.

Example 5 Solve 2x - y = 16 and 4x + 3y = -3 simultaneously.

Practice

Solve these simultaneous equations.

7	y = x - 4	8	y=2x-3
	2x + 5y = 43		5x - 3y = 11
9	2y = 4x + 5	10	2x = y - 2
	9x + 5y = 22		8x - 5y = -11
11	3x + 4y = 8	12	3y = 4x - 7
	2x - y = -13		2y = 3x - 4
13	3x = y - 1	14	3x + 2y + 1 = 0
	2y - 2x = 3		4y = 8 - x

Extend

15 Solve the simultaneous equations 3x + 5y - 20 = 0 and $2(x + y) = \frac{3(y - x)}{4}$.

Answers

- 1 x = 1, y = 4
- **2** x = 3, y = -2
- 3 x = 2, y = -5
- 4 $x = 3, y = -\frac{1}{2}$
- 5 x = 6, y = -1
- **6** x = -2, y = 5
- 7 x = 9, y = 5
- 8 x = -2, y = -7
- 9 $x = \frac{1}{2}, y = 3\frac{1}{2}$
- **10** $x = \frac{1}{2}, y = 3$
- 11 x = -4, y = 5
- **12** x = -2, y = -5
- **13** $x = \frac{1}{4}, y = 1 \frac{3}{4}$
- 14 $x = -2, y = 2\frac{1}{2}$
- **15** $x = -2\frac{1}{2}, y = 5\frac{1}{2}$

Solving linear and quadratic simultaneous equations Corbettmaths.com videos of use:

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations y = x + 1 and $x^2 + y^2 = 13$

$x^{2} + (x + 1)^{2} = 13$ $x^{2} + x^{2} + x + x + 1 = 13$ $2x^{2} + 2x + 1 = 13$	 Substitute x + 1 for y into the second equation. Expand the brackets and simplify.
$2x^{2} + 2x - 12 = 0$ (2x - 4)(x + 3) = 0	3 Factorise the quadratic equation.
So $x = 2$ or $x = -3$	4 Work out the values of x .
Using $y = x + 1$ When $x = 2$, $y = 2 + 1 = 3$ When $x = -3$, $y = -3 + 1 = -2$	5 To find the value of <i>y</i> , substitute both values of <i>x</i> into one of the original equations.
So the solutions are $x = 2$, $y = 3$ and $x = -3$, $y = -2$	
Check: equation 1: $3 = 2 + 1$ YES and $-2 = -3 + 1$ YES	6 Substitute both pairs of values of x and y into both equations to check your answers.
equation 2: $2^2 + 3^2 = 13$ YES and $(-3)^2 + (-2)^2 = 13$ YES	

- 12 Algebra: equation of a circle
- 298 Simultaneous equations (advanced)

$x = \frac{5 - 3y}{2}$	1	Rearrange the first equation.
$2y^2 + \left(\frac{5-3y}{2}\right)y = 12$	2	Substitute $\frac{5-3y}{2}$ for x into the second equation. Notice how it is
$2y^2 + \frac{5y - 3y^2}{2} = 12$		easier to substitute for x than for y .
-	3	Expand the brackets and simplify.
$4y^2 + 5y - 3y^2 = 24$		
$y^2 + 5y - 24 = 0$	4	Factorise the quadratic equation.
(y+8)(y-3) = 0 So $y = -8$ or $y = 3$	5	Work out the values of <i>y</i> .
	5	work out the values of y.
Using $2x + 3y = 5$ When $y = -8$, $2x + 3 \times (-8) = 5$, $x = 14.5$ When $y = 3$, $2x + 3 \times 3 = 5$, $x = -2$	6	To find the value of x , substitute both values of y into one of the original equations.
So the solutions are $x = 14.5$, $y = -8$ and $x = -2$, $y = 3$		
Check: equation 1: $2 \times 14.5 + 3 \times (-8) = 5$ YES and $2 \times (-2) + 3 \times 3 = 5$ YES equation 2: $2 \times (-8)^2 + 14.5 \times (-8) = 12$ YES and $2 \times (3)^2 + (-2) \times 3 = 12$ YES	7	Substitute both pairs of values of x and y into both equations to check your answers.

Example 2 Solve 2x + 3y = 5 and $2y^2 + xy = 12$ simultaneously.

Practice

Solve these simultaneous equations.

1	$y = 2x + 1$ $x^2 + y^2 = 10$	2	$y = 6 - x$ $x^2 + y^2 = 20$
3	$y = x - 3$ $x^2 + y^2 = 5$	4	$y = 9 - 2x$ $x^2 + y^2 = 17$
5	$y = 3x - 5$ $y = x^2 - 2x + 1$	6	$y = x - 5$ $y = x^2 - 5x - 12$
7	$y = x + 5$ $x^2 + y^2 = 25$	8	$y = 2x - 1$ $x^2 + xy = 24$
9	$y = 2x$ $y^2 - xy = 8$	10	2x + y = 11 $xy = 15$

Extend

11	x - y = 1	12	y-x=2
	$x^2 + y^2 = 3$		$x^2 + xy = 3$

Answers

x = 1, y = 31 $x = -\frac{9}{5}, y = -\frac{13}{5}$ 2 x = 2, y = 4x = 4, y = 23 x = 1, y = -2x = 2, y = -14 x = 4, y = 1 $x = \frac{16}{5}, y = \frac{13}{5}$ 5 x = 3, y = 4x = 2, y = 16 x = 7, y = 2x = -1, y = -67 x = 0, y = 5x = -5, y = 08 $x = -\frac{8}{3}, y = -\frac{19}{3}$ x = 3, y = 59 x = -2, y = -4x = 2, y = 410 $x = \frac{5}{2}, y = 6$ x = 3, y = 511 $x = \frac{1+\sqrt{5}}{2}, y = \frac{-1+\sqrt{5}}{2}$ $x = \frac{1-\sqrt{5}}{2}, y = \frac{-1-\sqrt{5}}{2}$ 12 $x = \frac{-1+\sqrt{7}}{2}, y = \frac{3+\sqrt{7}}{2}$ $x = \frac{-1 - \sqrt{7}}{2}, y = \frac{3 - \sqrt{7}}{2}$

Parallel and perpendicular lines

Corbettmaths.com videos of use:

196 - Linear graphs: parallel lines

197 - Linear graphs: perpendicular lines

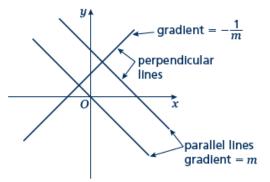
372 - Equation of a Tangent to a Circle

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation y = mx + c has gradient $-\frac{1}{2}$.



Examples

Example 1 Find the equation of the line parallel to y = 2x + 4 which passes through the point (4, 9).

y = 2x + 4 m = 2 y = 2x + c	 As the lines are parallel they have the same gradient. Substitute m = 2 into the equation of a straight line y = mx + c.
$9 = 2 \times 4 + c$	3 Substitute the coordinates into the equation $y = 2x + c$
9 = 8 + c $c = 1$ $y = 2x + 1$	4 Simplify and solve the equation.
y = 2x + 1	5 Substitute $c = 1$ into the equation y = 2x + c

Example 2 Find the equation of the line perpendicular to y = 2x - 3 which passes through the point (-2, 5).

y = 2x - 3 m = 2 $-\frac{1}{m} = -\frac{1}{2}$	1 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
$y = -\frac{1}{2}x + c$	2 Substitute $m = -\frac{1}{2}$ into $y = mx + c$.
$5 = -\frac{1}{2} \times (-2) + c$	3 Substitute the coordinates $(-2, 5)$
$3 = 2^{(2)+c}$	into the equation $y = -\frac{1}{2}x + c$
5 = 1 + c $c = 4$	4 Simplify and solve the equation.
$c = 4$ $y = -\frac{1}{2}x + 4$	5 Substitute $c = 4$ into $y = -\frac{1}{2}x + c$.

Example 3

A line passes through the points (0, 5) and (9, -1).
 Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$x_1 = 0, x_2 = 9, y_1 = 5 \text{ and } y_2 = -1$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 5}{9 - 0}$	1 Substitute the coordinates into the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out the gradient of the line.
$= \frac{-6}{9} = -\frac{2}{3}$ $-\frac{1}{m} = \frac{3}{2}$	2 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{2}$.
$y = \frac{3}{2}x + c$	m 3 Substitute the gradient into the equation $y = mx + c$.
Midpoint = $\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right) = \left(\frac{9}{2}, 2\right)$	4 Work out the coordinates of the midpoint of the line.
$2 = \frac{3}{2} \times \frac{9}{2} + c$	5 Substitute the coordinates of the midpoint into the equation.
$c = -\frac{19}{4}$	6 Simplify and solve the equation.
$y = \frac{3}{2}x - \frac{19}{4}$	7 Substitute $c = -\frac{19}{4}$ into the equation $y = \frac{3}{2}x + c$.

Practice

- 1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
 - **a** y = 3x + 1 (3, 2) **b** y = 3 - 2x (1, 3) **c** 2x + 4y + 3 = 0 (6, -3) **d** 2y - 3x + 2 = 0 (8, 20)

2 Find the equation of the line perpendicular to $y = \frac{1}{2}x - 3$ which passes through the point (-5, 3).

Hint If $m = \frac{a}{b}$ then the negative reciprocal $-\frac{1}{m} = -\frac{b}{a}$

- **3** Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
 - **a** y = 2x 6 (4,0) **b** $y = -\frac{1}{3}x + \frac{1}{2}$ (2,13) **c** x - 4y - 4 = 0 (5,15) **d** 5y + 2x - 5 = 0 (6,7)
- 4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.

a (4, 3), (-2, -9) **b** (0, 3), (-10, 8)

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.

	y = 2x + 3 $y = 2x - 7$	b	y = 3x $2x + y - 3 = 0$		y = 4x - 3 $4y + x = 2$
d	3x - y + 5 = 0 $x + 3y = 1$	e	2x + 5y - 1 = 0 $y = 2x + 7$	f	2x - y = 6 $6x - 3y + 3 = 0$

6 The straight line L_1 passes through the points A and B with coordinates (-4, 4) and (2, 1), respectively.

a Find the equation of L_1 in the form ax + by + c = 0

The line L_2 is parallel to the line L_1 and passes through the point *C* with coordinates (-8, 3).

b Find the equation of L_2 in the form ax + by + c = 0

The line L_3 is perpendicular to the line L_1 and passes through the origin.

 $c \qquad \text{Find an equation of } L_3$

Answers

- **1 a** y = 3x 7 **b** y = -2x + 5**c** $y = -\frac{1}{2}x$ **d** $y = \frac{3}{2}x + 8$
- **2** y = -2x 7
- **3 a** $y = -\frac{1}{2}x + 2$ **b** y = 3x + 7 **c** y = -4x + 35**d** $y = \frac{5}{2}x - 8$
- **4 a** $y = -\frac{1}{2}x$ **b** y = 2x
- 5aParallelbNeithercPerpendiculardPerpendiculareNeitherfParallel6ax + 2y 4 = 0bx + 2y + 2 = 0cy = 2x

Pythagoras' theorem

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

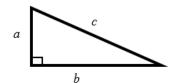
- In a right-angled triangle the longest side is called the hypotenuse.
- Pythagoras' theorem states that for a right-angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides. $c^2 = a^2 + b^2$

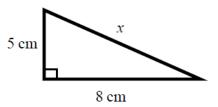
Examples

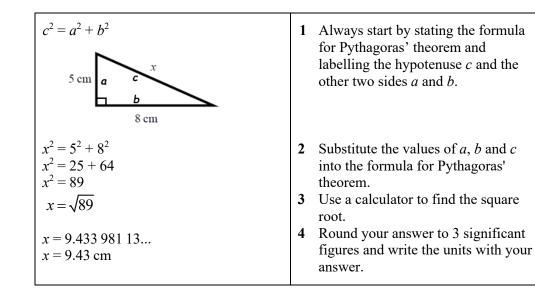
Example 1

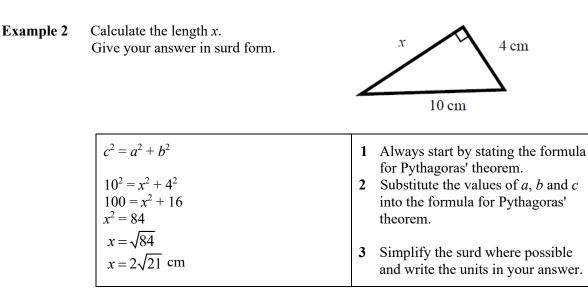
Calculate the length of the hypotenuse. Give your answer to 3 significant figures. Corbettmaths.com videos of use:

- 259 Pythagoras: 3D
- 260 Pythagoras: rectangles/isosceles triangles
- 263 Pythagoras: distance points



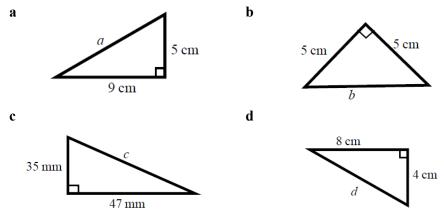




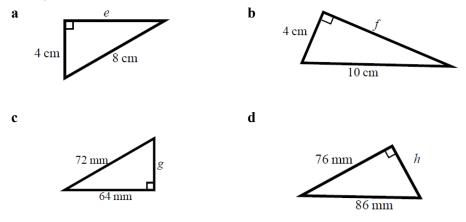


Practice

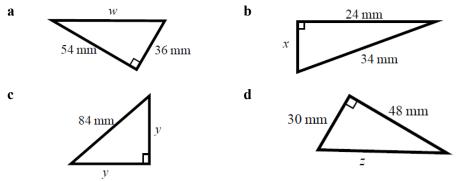
1 Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.



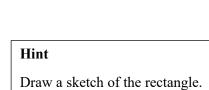
2 Work out the length of the unknown side in each triangle. Give your answers in surd form.



3 Work out the length of the unknown side in each triangle. Give your answers in surd form.



4 A rectangle has length 84 mm and width 45 mm. Calculate the length of the diagonal of the rectangle. Give your answer correct to 3 significant figures.

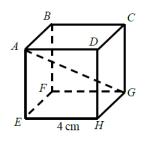


Extend

- 5 A yacht is 40 km due North of a lighthouse. A rescue boat is 50 km due East of the same lighthouse. Work out the distance between the yacht and the rescue boat. Give your answer correct to 3 significant figures.
- 6 Points A and B are shown on the diagram. Work out the length of the line AB. Give your answer in surd form.

$$y$$
 × B(4, 7)
× A(1, 1) x

7 A cube has length 4 cm.Work out the length of the diagonal *AG*.Give your answer in surd form.



Hint

Draw a diagram using the information given in the question.

Answers

1	a	10.3 cm	b	7.07 cm
	c	58.6 mm	d	8.94 cm
2	a	$4\sqrt{3}$ cm	b	$2\sqrt{21}$ cm
	c	$8\sqrt{17}$ mm	d	$18\sqrt{5}$ mm
3	a	$18\sqrt{13}$ mm	b	$2\sqrt{145}$ mm
	c	$42\sqrt{2}$ mm	d	$6\sqrt{89}$ mm

- 4 95.3 mm
- 5 64.0 km
- 6 $3\sqrt{5}$ units
- 7 $4\sqrt{3}$ cm

Proportion

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- Two quantities are in direct proportion when, as one quantity increases, the other increases at the same rate. Their ratio remains the same.
- 'y is directly proportional to x' is written as $y \propto x$. If $y \propto x$ then y = kx, where k is a constant.
- When *x* is directly proportional to *y*, the graph is a straight line passing through the origin.
- Two quantities are in inverse proportion when, as one quantity increases, the other decreases at the same rate.
- 'y is inversely proportional to x' is written as $y \propto \frac{1}{x}$.

If $y \propto \frac{1}{x}$ then $y = \frac{k}{x}$, where k is a constant.

• When x is inversely proportional to y the graph is the same shape as the graph of $y = \frac{1}{x}$

Examples

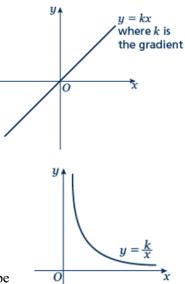
Example 1 y

y is directly proportional to x. When y = 16, x = 5.

a Find x when y = 30.

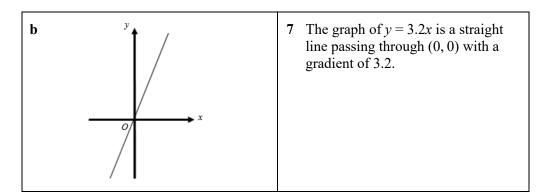
b Sketch the graph of the formula.

a $y \propto x$	1 Write y is directly proportional to x ,
y = kx 16 = k × 5	 using the symbol ∞. Write the equation using k. Substitute y = 16 and x = 5 into y = kx.
<i>k</i> = 3.2	4 Solve the equation to find <i>k</i> .
y = 3.2x	5 Substitute the value of k back into the equation $y = kx$.
When $y = 30$, $30 = 3.2 \times x$ x = 9.375	6 Substitute $y = 30$ into $y = 3.2x$ and solve to find x when $y = 30$.



Corbettmaths.com videos of use:

- 254 Proportion: direct
- 255 Proportion: inverse



y is directly proportional to x^2 . Example 2 When x = 3, y = 45. **a** Find y when x = 5.

- Find x when y = 20. b

a $y \propto x^2$	1 Write y is directly proportional to x^2 , using the symbol ∞ .		
$y = kx^2$ 45 = k × 3 ²	 2 Write the equation using k. 3 Substitute y = 45 and x = 3 into y = kx². 		
k = 5 $y = 5x^2$	 4 Solve the equation to find k. 5 Substitute the value of k back into the equation y = kx². 		
When $x = 5$, $y = 5 \times 5^2$ y = 125	6 Substitute $x = 5$ into $y = 5x^2$ and solve to find y when $x = 5$.		
b $20 = 5 \times x^2$ $x^2 = 4$ $x = \pm 2$	7 Substitute $y = 20$ into $y = 5x^2$ and solve to find x when $y = 4$.		

P is inversely proportional to Q. Example 3 When P = 100, Q = 10. Find Q when P = 20.

$P \propto \frac{1}{Q}$	1 Write <i>P</i> is inversely proportional to <i>Q</i> , using the symbol ∞ .
$P = \frac{k}{Q}$	2 Write the equation using k .
$100 = \frac{k}{10}$	3 Substitute $P = 100$ and $Q = 10$.
<i>k</i> = 1000	4 Solve the equation to find <i>k</i> .
$P = \frac{1000}{Q}$	5 Substitute the value of k into $P = \frac{k}{Q}$
$20 = \frac{1000}{Q}$	6 Substitute $P = 20$ into $P = \frac{1000}{Q}$ and
$Q = \frac{1000}{20} = 50$	solve to find Q when $P = 20$.
20	

Practice

- Paul gets paid an hourly rate. The amount of pay (£*P*) is directly proportional to the number of hours (*h*) he works. When he works 8 hours he is paid £56. If Paul works for 11 hours, how much is he paid?
- 2 x is directly proportional to y. x = 35 when y = 5
 - x = 35 when y = 5.
 - **a** Find a formula for *x* in terms of *y*.
 - **b** Sketch the graph of the formula.
 - c Find x when y = 13.
 - **d** Find y when x = 63.
- 3 *Q* is directly proportional to the square of *Z*. Q = 48 when Z = 4.
 - **a** Find a formula for Q in terms of Z.
 - **b** Sketch the graph of the formula.
 - **c** Find Q when Z = 5.
 - **d** Find Z when Q = 300.
- 4 y is directly proportional to the square of x. x = 2 when y = 10.
 - **a** Find a formula for *y* in terms of *x*.
 - **b** Sketch the graph of the formula.
 - c Find x when y = 90.
- 5 *B* is directly proportional to the square root of *C*. C = 25 when B = 10.
 - **a** Find *B* when C = 64.
 - **b** Find C when B = 20.
- 6 C is directly proportional to D. C = 100 when D = 150. Find C when D = 450.
- 7 y is directly proportional to x. x = 27 when y = 9. Find x when y = 3.7.
- 8 *m* is proportional to the cube of *n*. m = 54 when n = 3. Find *n* when m = 250.

Hint

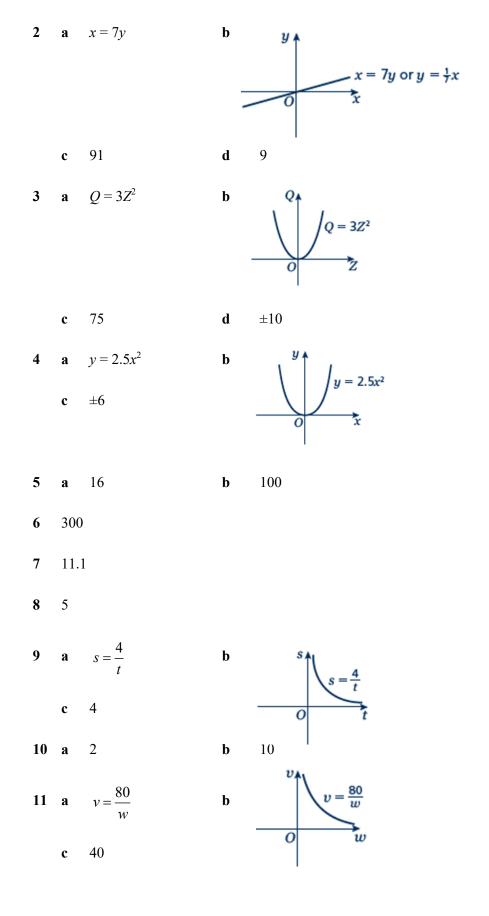
Substitute the values given for *P* and *h* into the formula to calculate *k*.

Extend

- 9 *s* is inversely proportional to *t*.
 - **a** Given that s = 2 when t = 2, find a formula for s in terms of t.
 - **b** Sketch the graph of the formula.
 - **c** Find *t* when s = 1.
- 10 *a* is inversely proportional to *b*. a = 5 when b = 20.
 - **a** Find a when b = 50.
 - **b** Find *b* when a = 10.
- 11 *v* is inversely proportional to *w*.
 - w = 4 when v = 20.
 - **a** Find a formula for *v* in terms of *w*.
 - **b** Sketch the graph of the formula.
 - **c** Find w when v = 2.
- 12 *L* is inversely proportional to *W*. L = 12 when W = 3. Find *W* when L = 6.
- 13 *s* is inversely proportional to *t*. s = 6 when t = 12.
 - **a** Find *s* when t = 3.
 - **b** Find t when s = 18.
- 14 y is inversely proportional to x^2 . y = 4 when x = 2. Find y when x = 4.
- 15 y is inversely proportional to the square root of x. x = 25 when y = 1. Find x when y = 5.
- 16 *a* is inversely proportional to *b*. a = 0.05 when b = 4.
 - **a** Find *a* when b = 2.
 - **b** Find *b* when a = 2.

Answers

1 £77



12 6
13 a 24 b 4
14 1
15 1
16 a 0.1 b 0.1

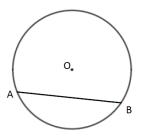
Circle theorems

A LEVEL LINKS

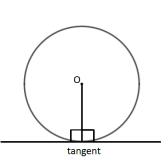
Scheme of work: 2b. Circles – equation of a circle, geometric problems on a grid

Key points

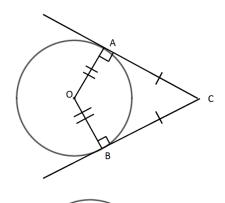
• A chord is a straight line joining two points on the circumference of a circle. So AB is a chord.

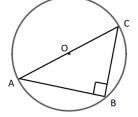


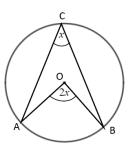
• A tangent is a straight line that touches the circumference of a circle at only one point. The angle between a tangent and the radius is 90°.



- Two tangents on a circle that meet at a point outside the circle are equal in length. So AC = BC.
- The angle in a semicircle is a right angle. So angle $ABC = 90^{\circ}$.
- When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.
 So angle AOB = 2 × angle ACB.



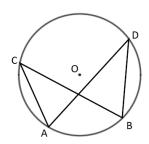


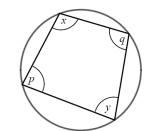


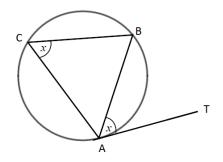
Corbettmaths.com videos of use:

- 64 Circle theorems theorems
- 65 Circle theorems examples

- Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal.
 So angle ACB = angle ADB and angle CAD = angle CBD.
- A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle.
 Opposite angles in a cyclic quadrilateral total 180°. So x + y = 180° and p + q = 180°.
- The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem. So angle BAT = angle ACB.





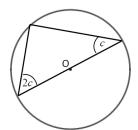


Examples

Example 1 Work out the size of each angle marked with a letter. Give reasons for your answers.

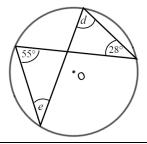
Angle $a = 360^{\circ} - 92^{\circ}$ = 268° as the angles in a full turn total 360°.	1 The angles in a full turn total 360°.
Angle $b = 268^{\circ} \div 2$ = 134° as when two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.	2 Angles <i>a</i> and <i>b</i> are subtended by the same arc, so angle <i>b</i> is half of angle <i>a</i> .

Example 2 Work out the size of the angles in the triangle. Give reasons for your answers.



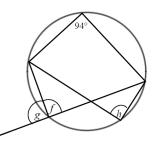
Angles are 90°, $2c$ and c .	1 The angle in a semicircle is a right angle.
$90^{\circ} + 2c + c = 180^{\circ}$ $90^{\circ} + 3c = 180^{\circ}$ $3c = 90^{\circ}$ $c = 30^{\circ}$ $2c = 60^{\circ}$	2 Angles in a triangle total 180°.3 Simplify and solve the equation.
The angles are 30° , 60° and 90° as the angle in a semi-circle is a right angle and the angles in a triangle total 180° .	

Example 3 Work out the size of each angle marked with a letter. Give reasons for your answers.



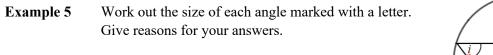
Angle $d = 55^{\circ}$ as angles subtended by the same arc are equal.	1 Angles subtended by the same arc are equal so angle 55° and angle <i>d</i> are equal.
Angle $e = 28^{\circ}$ as angles subtended by the same arc are equal.	2 Angles subtended by the same arc are equal so angle 28° and angle <i>e</i> are equal.

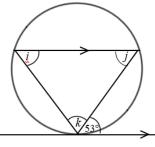
Example 4 Work out the size of each angle marked with a letter. Give reasons for your answers.



Angle $f = 180^{\circ} - 94^{\circ}$ = 86° as opposite angles in a cyclic quadrilateral total 180°.	 Opposite angles in a cyclic quadrilateral total 180° so angle 94° and angle <i>f</i> total 180°.
	<i>(continued on next page)</i>

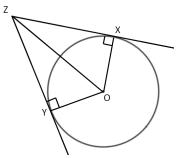
Angle $g = 180^{\circ} - 86^{\circ}$ = 84° as angles on a straight line total 180°.	2 Angles on a straight line total 180° so angle <i>f</i> and angle <i>g</i> total 180° .
Angle $h = \text{angle } f = 86^{\circ}$ as angles subtended by the same arc are equal.	3 Angles subtended by the same arc are equal so angle f and angle h are equal.





Angle $i = 53^{\circ}$ because of the alternate segment theorem.	1 The angle between a tangent and chord is equal to the angle in the alternate segment.
Angle $j = 53^{\circ}$ because it is the alternate angle to 53° .	2 As there are two parallel lines, angle 53° is equal to angle <i>j</i> because they are alternate angles.
Angle $k = 180^{\circ} - 53^{\circ} - 53^{\circ}$ = 74° as angles in a triangle total 180°.	3 The angles in a triangle total 180°, so $i + j + k = 180^{\circ}$.

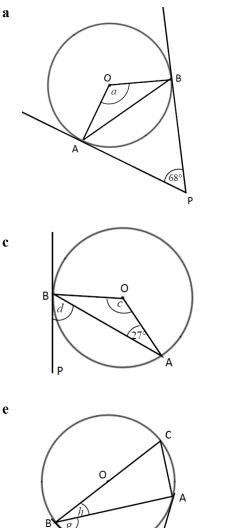
Example 6XZ and YZ are two tangents to a circle with centre O.Prove that triangles XZO and YZO are congruent.

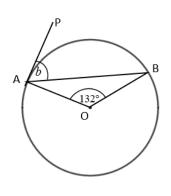


Angle $OXZ = 90^{\circ}$ and angle $OYZ = 90^{\circ}$ as the angles in a semicircle are right angles.	For two triangles to be congruent you need to show one of the following.		
	• All three corresponding sides are equal (SSS).		
OZ is a common line and is the hypotenuse in both triangles.	• Two corresponding sides and the included angle are equal (SAS).		
OX = OY as they are radii of the same circle.	• One side and two corresponding angles are equal (ASA).		
So triangles XZO and YZO are congruent, RHS.	• A right angle, hypotenuse and a shorter side are equal (RHS).		

Practice

1 Work out the size of each angle marked with a letter. Give reasons for your answers.

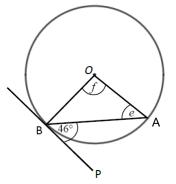




d

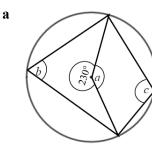
b

b

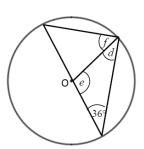


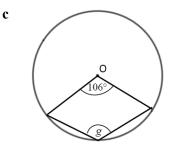
Work out the size of each angle marked with a letter. Give reasons for your answers.

56



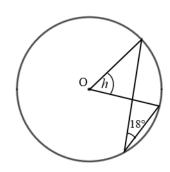
2





Hint

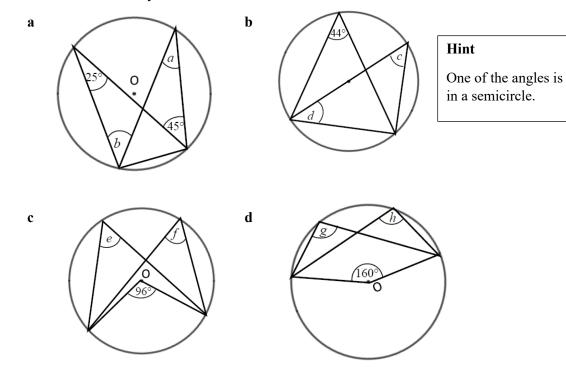
The reflex angle at point O and angle g are subtended by the same arc. So the reflex angle is twice the size of angle g.



Hint

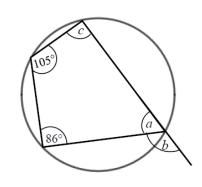
Angle 18° and angle *h* are subtended by the same arc.

3 Work out the size of each angle marked with a letter. Give reasons for your answers.



a

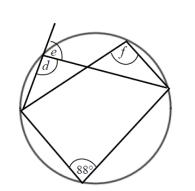
4 Work out the size of each angle marked with a letter. Give reasons for your answers.

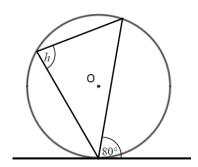


Hint

c

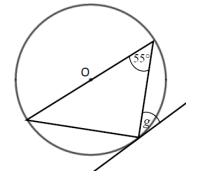
An exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.

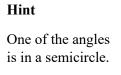




d

b





Extend

5 Prove the alternate segment theorem.

Answers

- 1 a $a = 112^\circ$, angle OAP = angle OBP = 90° and angles in a quadrilateral total 360°.
 - **b** $b = 66^{\circ}$, triangle OAB is isosceles, Angle OAP = 90^{\circ} as AP is tangent to the circle.
 - c $c = 126^{\circ}$, triangle OAB is isosceles. $d = 63^{\circ}$, Angle OBP = 90° as BP is tangent to the circle.
 - **d** $e = 44^{\circ}$, the triangle is isosceles, so angles *e* and angle OBA are equal. The angle OBP = 90° as BP is tangent to the circle.
 - $f = 92^{\circ}$, the triangle is isosceles.
 - e $g = 62^{\circ}$, triangle ABP is isosceles as AP and BP are both tangents to the circle. $h = 28^{\circ}$, the angle OBP = 90°.
- 2 **a** $a = 130^{\circ}$, angles in a full turn total 360°. $b = 65^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference. $c = 115^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
 - **b** $d = 36^{\circ}$, isosceles triangle. $e = 108^{\circ}$, angles in a triangle total 180°. $f = 54^{\circ}$, angle in a semicircle is 90°.
 - c $g = 127^{\circ}$, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
 - **d** $h = 36^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference.
- 3 **a** $a = 25^{\circ}$, angles in the same segment are equal. $b = 45^{\circ}$, angles in the same segment are equal.
 - **b** $c = 44^{\circ}$, angles in the same segment are equal. $d = 46^{\circ}$, the angle in a semicircle is 90° and the angles in a triangle total 180°.
 - c $e = 48^{\circ}$, the angle at the centre of a circle is twice the angle at the circumference. $f = 48^{\circ}$, angles in the same segment are equal.
 - **d** $g = 100^{\circ}$, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle at the circumference.
 - $h = 100^{\circ}$, angles in the same segment are equal.
- 4 **a** $a = 75^{\circ}$, opposite angles in a cyclic quadrilateral total 180°. $b = 105^{\circ}$, angles on a straight line total 180°. $c = 94^{\circ}$, opposite angles in a cyclic quadrilateral total 180°.
 - **b** $d = 92^{\circ}$, opposite angles in a cyclic quadrilateral total 180°. $e = 88^{\circ}$, angles on a straight line total 180°. $f = 92^{\circ}$, angles in the same segment are equal.
 - c $h = 80^{\circ}$, alternate segment theorem.
 - **d** $g = 35^{\circ}$, alternate segment theorem and the angle in a semicircle is 90°.

5 Angle BAT = x.

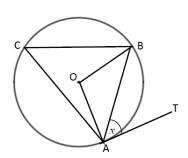
Angle OAB = $90^{\circ} - x$ because the angle between the tangent and the radius is 90° .

OA = OB because radii are equal.

Angle OAB = angle OBA because the base of isosceles triangles are equal.

Angle AOB = $180^{\circ} - (90^{\circ} - x) - (90^{\circ} - x) = 2x$ because angles in a triangle total 180° .

Angle ACB = $2x \div 2 = x$ because the angle at the centre is twice the angle at the circumference.



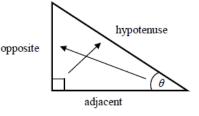
Trigonometry in rightangled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
 - the side opposite the right angle is called the hypotenuse
 - the side opposite the angle θ is called the opposite
 - the side next to the angle θ is called the adjacent.



- In a right-angled triangle:
 - the ratio of the opposite side to the hypotenuse is the sine of angle θ , $\sin \theta = \frac{\text{opp}}{\text{hyp}}$
 - the ratio of the adjacent side to the hypotenuse is the cosine of angle θ , $\cos \theta = \frac{\text{adj}}{\text{hyp}}$
 - the ratio of the opposite side to the adjacent side is the tangent of angle θ , $\tan \theta = \frac{\text{opp}}{\text{adi}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: sin⁻¹, cos⁻¹, tan⁻¹.
- The sine, cosine and tangent of some angles may be written exactly.

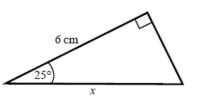
_	0	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

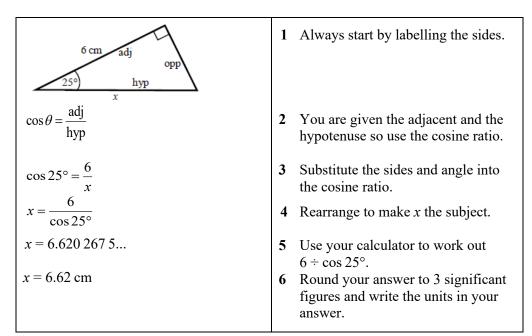
- Corbettmaths.com videos of use:
- 332 Trigonometry: 3D
- 338 Trigonometry: Sine graph
- 339 Trigonometry: Cosine graph
- 340 Trigonometry: Tangent graph

Examples

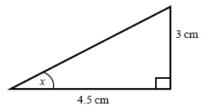
Example 1

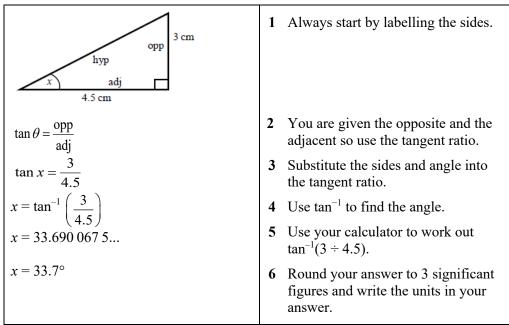
Calculate the length of side *x*. Give your answer correct to 3 significant figures.



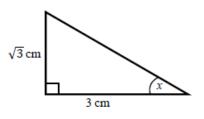


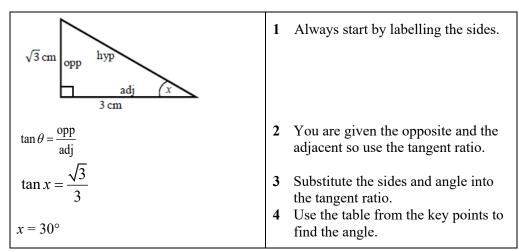
Example 2Calculate the size of angle x.Give your answer correct to 3 significant figures.





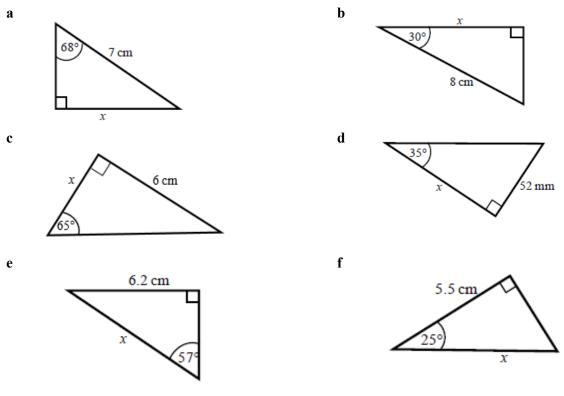
Example 3 Calculate the exact size of angle *x*.





Practice

1 Calculate the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.



2 Calculate the size of angle *x* in each triangle. Give your answers correct to 1 decimal place.



3 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

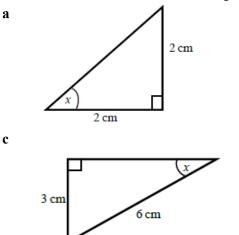
Split the triangle into two right-angled triangles.

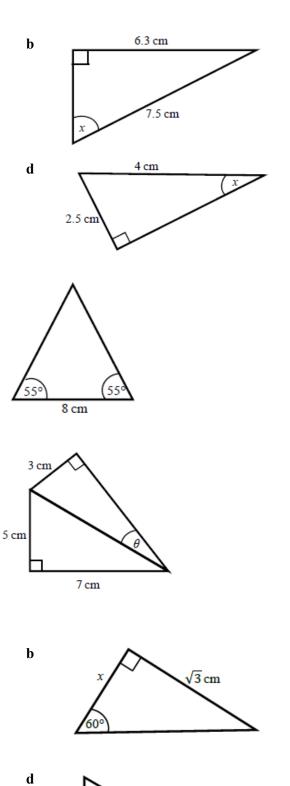
4 Calculate the size of angle θ . Give your answer correct to 1 decimal place.

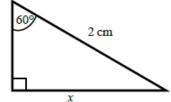
Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.







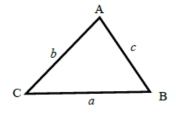
The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.1 The cosine rule Corbettmaths.com videos of use: 335 - Trigonometry: cosine rule (sides) 336 - Trigonometry: cosine rule (angles)

Key points

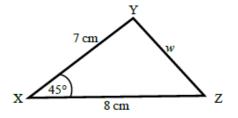
• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

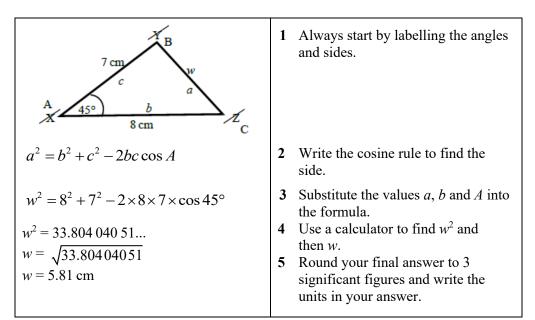


- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^2 = b^2 + c^2 2bc \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A = \frac{b^2 + c^2 a^2}{2bc}$.

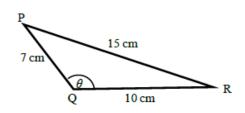
Examples

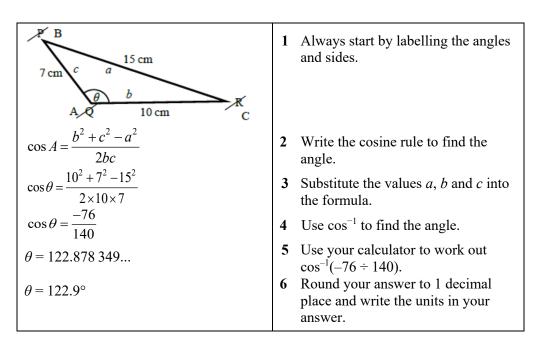
Example 4Work out the length of side w.Give your answer correct to 3 significant figures.





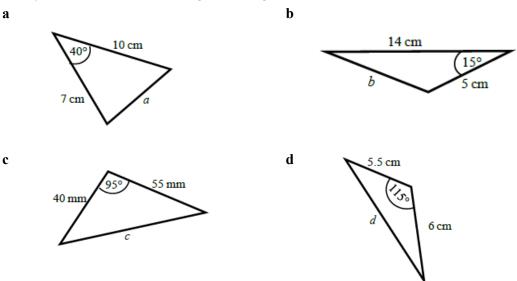
Example 5Work out the size of angle θ .
Give your answer correct to 1 decimal place.



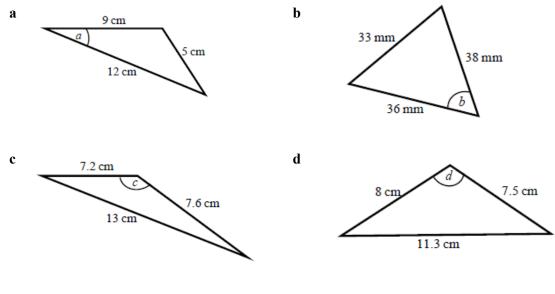


Practice

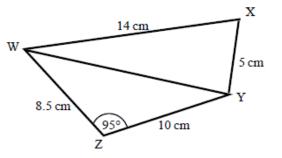
6 Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.



7 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.



- 8 a Work out the length of WY. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle WXY. Give your answer correct to 1 decimal place.



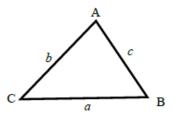
The sine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.2 The sine rule

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

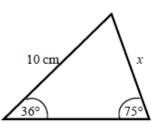


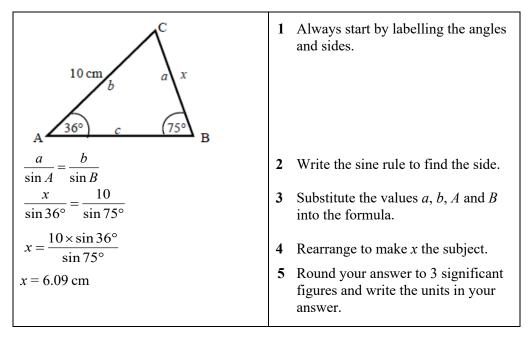
- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

Examples

Example 6 Work out the length of side *x*.

Give your answer correct to 3 significant figures.

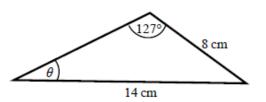


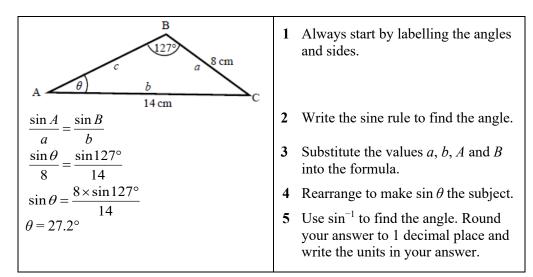


Corbettmaths.com videos of use:

- 333 Trigonometry: sine rule (sides)
- 334 Trigonometry: sine rule (angles)
- 334a Trigonometry: sine rule (ambiguous case)

Example 7Work out the size of angle θ .
Give your answer correct to 1 decimal place.



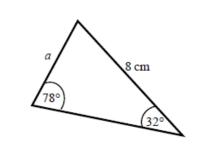


Practice

a

с

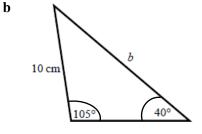
9 Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.



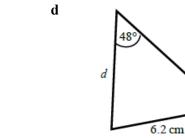
74 mm

350

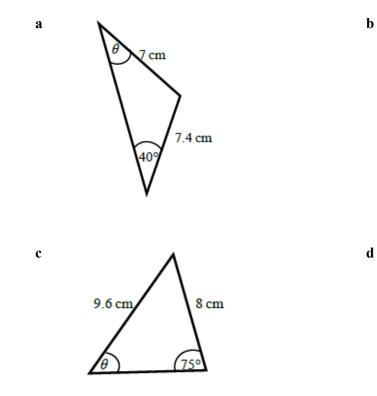
110



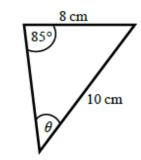
50

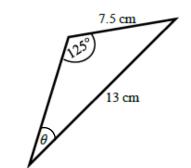


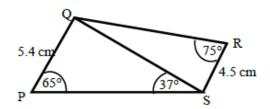
10 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.



- **11 a** Work out the length of QS. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle RQS. Give your answer correct to 1 decimal place.







Areas of triangles

A LEVEL LINKS

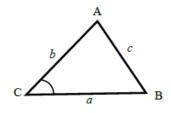
Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.3 Areas of triangles

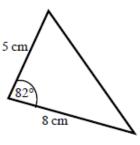
Key points

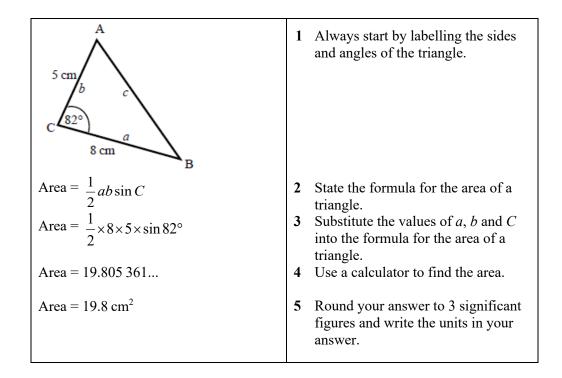
- *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.
- The area of the triangle is $\frac{1}{2}ab\sin C$.

Examples

Example 8 Find the area of the triangle.





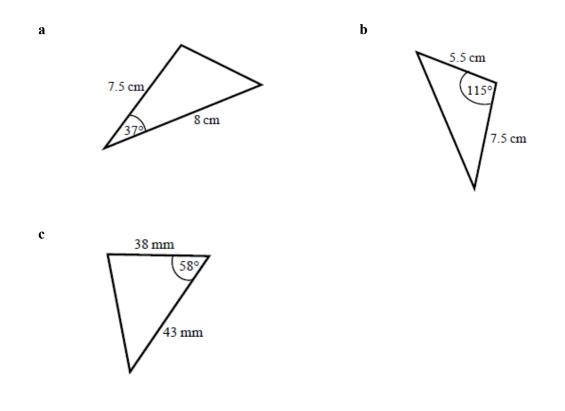


Corbettmaths.com videos of use:

337 – Area of a triangle

Practice

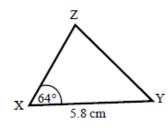
12 Work out the area of each triangle. Give your answers correct to 3 significant figures.



13 The area of triangle XYZ is 13.3 cm². Work out the length of XZ.

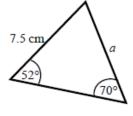
Hint:

Rearrange the formula to make a side the subject.



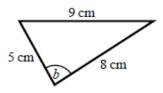
Extend

- 14 Find the size of each lettered angle or side. Give your answers correct to 3 significant figures.
 - a

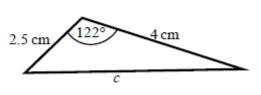


For each one, decide whether to use the cosine or sine rule.

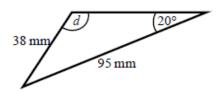
b



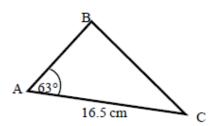
c



d



15 The area of triangle ABC is 86.7 cm². Work out the length of BC. Give your answer correct to 3 significant figures.



Answers

1	a d	6.49 cm 74.3 mm	b e	6.93 cm 7.39 cm	c f	2.80 cm 6.07 cm		
2	a	36.9°	b	57.1°	c	47.0°	d	38.7°
3	5.7	1 cm						
4	20.	4°						
5	a	45°	b	1 cm	c	30°	d	$\sqrt{3}$ cm
6	a	6.46 cm	b	9.26 cm	c	70.8 mm	d	9.70 cm
7	a	22.2°	b	52.9°	c	122.9°	d	93.6°
8	a	13.7 cm	b	76.0°				
9	a	4.33 cm	b	15.0 cm	c	45.2 mm	d	6.39 cm
10	a	42.8°	b	52.8°	c	53.6°	d	28.2°
11	a	8.13 cm	b	32.3°				
12	a	18.1 cm^2	b	18.7 cm^2	c	693 mm ²		
13	5.1	0 cm						
14	a	6.29 cm	b	84.3°	c	5.73 cm	d	58.8°
		_						

15 15.3 cm

Rearranging equations

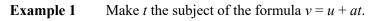
A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives **Textbook:** Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples



v = u + at $v - u = at$	1 Get the terms containing <i>t</i> on one side and everything else on the other side.
$t = \frac{v - u}{a}$	2 Divide throughout by <i>a</i> .

Example 2 Make *t* the subject of the formula $r = 2t - \pi t$.

$r = 2t - \pi t$	1 All the terms containing <i>t</i> are already on one side and everything else is on the other side.
$r = t(2 - \pi)$	2 Factorise as <i>t</i> is a common factor.
$t = \frac{r}{2 - \pi}$	3 Divide throughout by $2 - \pi$.

Example 3 Make *t* the subject of the formula $\frac{t+r}{5} = \frac{3t}{2}$.

	_
$\frac{t+r}{5} = \frac{3t}{2}$	1 Remove the fractions first by multiplying throughout by 10.
2t + 2r = 15t	2 Get the terms containing <i>t</i> on one side and everything else on the other
2r = 13t	side and simplify.
$t = \frac{2r}{r}$	3 Divide throughout by 13.
13	

Corbettmaths.com videos of use:

- 111 Equations: involving fractions
- 112 Equations: fractional advanced
- 112 Equations: cross multiplication

lexcel

xample 4	Make <i>t</i> the subject of the formula $r = \frac{5t+5}{t-1}$.						
	$r = \frac{3t+5}{t-1}$	1	Remove the fraction first by multiplying throughout by $t - 1$.				
	r(t-1) = 3t+5	2	Expand the brackets.				
	rt - r = 3t + 5 $rt - 3t = 5 + r$	3	Get the terms containing <i>t</i> on one side and everything else on the other side.				
	$r = \frac{3t+5}{t-1}$ $r(t-1) = 3t+5$ $rt-r = 3t+5$ $rt-3t = 5+r$ $t(r-3) = 5+r$ $t = \frac{5+r}{r-3}$	4 5	Factorise the LHS as t is a common factor. Divide throughout by $r - 3$.				

3t + 5Ex

Practice

Change the subject of each formula to the letter given in the brackets.

- **3** $D = \frac{S}{T} [T]$ 1 $C = \pi d [d]$ **2** P = 2l + 2w [w] **5** $u = at - \frac{1}{2}t$ [t] $4 \qquad p = \frac{q-r}{t} \quad [t]$ $\mathbf{6} \qquad V = ax + 4x \quad [x]$ 7 $\frac{y-7x}{2} = \frac{7-2y}{3}$ [y] 8 $x = \frac{2a-1}{3-a}$ [a] 9 $x = \frac{b-c}{d}$ [d] **11** e(9+x) = 2e+1 [e] **12** $y = \frac{2x+3}{4-x}$ [x]10 $h = \frac{7g-9}{2+g}$ [g]
- 13 Make *r* the subject of the following formulae.

a
$$A = \pi r^2$$
 b $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$

14 Make *x* the subject of the following formulae.

a
$$\frac{xy}{z} = \frac{ab}{cd}$$
 b $\frac{4\pi cx}{d} = \frac{3z}{py^2}$

15 Make sin *B* the subject of the formula $\frac{a}{\sin A} = \frac{b}{\sin B}$

16 Make $\cos B$ the subject of the formula $b^2 = a^2 + c^2 - 2ac \cos B$.

Extend

- 17 Make *x* the subject of the following equations.
 - $\mathbf{b} \qquad \frac{p}{q}(ax+2y) = \frac{3p}{a^2}(x-y)$ **a** $\frac{p}{q}(sx+t) = x-1$

Answers

 $d = \frac{C}{\pi}$ $w = \frac{P-2l}{2}$ **3** $T = \frac{S}{D}$ $t = \frac{2u}{2a-1}$ 6 $x = \frac{V}{a+4}$ $t = \frac{q-r}{p}$ $a = \frac{3x+1}{x+2}$ 9 $d = \frac{b-c}{x}$ y = 2 + 3x $e = \frac{1}{x+7}$ $g = \frac{2h+9}{7-h}$ $x = \frac{4y-3}{2+y}$ 13 a $r = \sqrt{\frac{A}{\pi}}$ b $r = \sqrt[3]{\frac{3V}{4\pi}}$ c $r = \frac{P}{\pi + 2}$ d $r = \sqrt{\frac{3V}{2\pi h}}$ 14 a $x = \frac{abz}{cdv}$ b $x = \frac{3dz}{4\pi cpy^2}$ $\sin B = \frac{b \sin A}{a}$ $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$

17 a
$$x = \frac{q + pt}{q - ps}$$
 b $x = \frac{3py + 2pqy}{3p - apq} = \frac{y(3 + 2q)}{3 - aq}$

Volume and surface area of **3D** shapes

A LEVEL LINKS

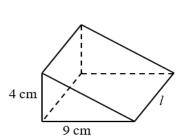
Scheme of work: 6b. Gradients, tangents, normals, maxima and minima

Key points

- Volume of a prism = cross-sectional area \times length. •
- The surface area of a 3D shape is the total area • of all its faces.
- Volume of a pyramid = $\frac{1}{3}$ × area of base × vertical height. •
- Volume of a cylinder = $\pi r^2 h$ •
- Total surface area of a cylinder = $2\pi r^2 + 2\pi rh$
- Volume of a sphere = $\frac{4}{3}\pi r^3$ Surface area of a sphere = $4\pi r^2$
- Volume of a cone = $\frac{1}{3}\pi r^2 h$ •
- Total surface area of a cone = $\pi r l + \pi r^2$ •

Examples

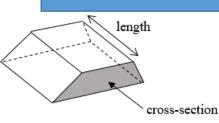
Example 1 The triangular prism has volume 504 cm³. Work out its length.

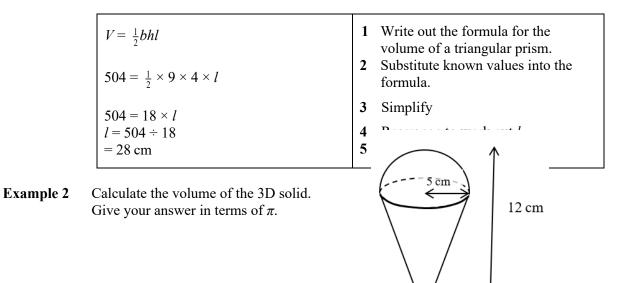


h

- Corbettmaths.com videos of use:
- 359 Volume: cone
- 360 Volume: pyramid

- 313 Surface area: sphere
- 314 Surface area: cone
- 315 Surface area: cylinders

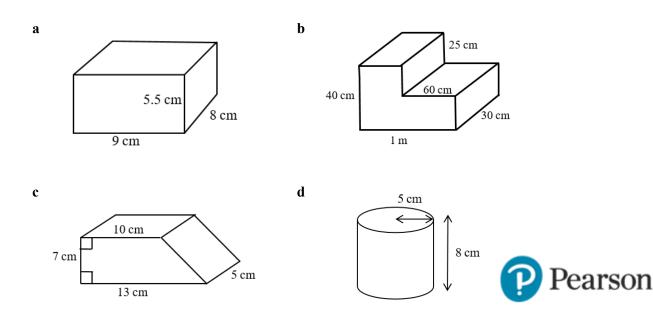


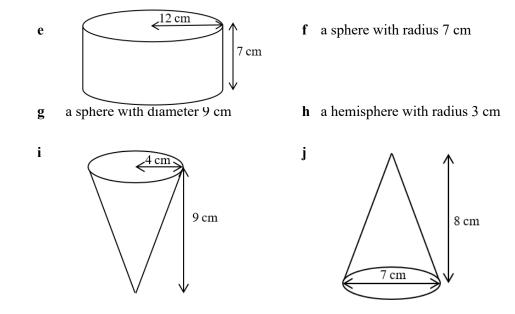


Total volume = volume of hemisphere + Volume of cone = $\frac{1}{2}$ of $\frac{4}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$	1 The solid is made up of a hemisphere radius 5 cm and a cone with radius 5 cm and height 12 - 5 = 7 cm.
Total volume = $\frac{1}{2} \times \frac{4}{3} \times \pi \times 5^3$	2 Substitute the measurements into the formula for the total volume.
$+ \frac{1}{3} \times \pi \times 5^2 \times 7$ $= \frac{425}{3} \pi \text{ cm}^3$	3 Remember the units.

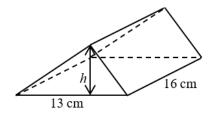
Practice

1 Work out the volume of each solid. Leave your answers in terms of π where appropriate.



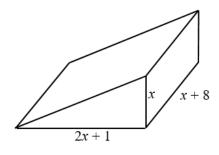


- 2 A cuboid has width 9.5 cm, height 8 cm and volume 1292 cm³. Work out its length.
- 3 The triangular prism has volume 1768 cm³. Work out its height.

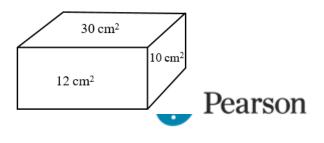


Extend

4 The diagram shows a solid triangular prism. All the measurements are in centimetres. The volume of the prism is V cm³.
Find a formula for V in terms of x. Give your answer in simplified form.



5 The diagram shows the area of each of three faces of a cuboid.

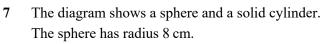


The length of each edge of the cuboid is a whole number of centimetres.

Work out the volume of the cuboid.

6 The diagram shows a large catering size tin of beans in the shape of a cylinder.

The tin has a radius of 8 cm and a height of 15 cm. A company wants to make a new size of tin. The new tin will have a radius of 6.7 cm. It will have the same volume as the large tin. Calculate the height of the new tin. Give your answer correct to one decimal place.



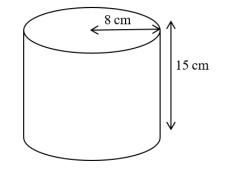
The solid cylinder has a base radius of 4 cm and a height of h cm.

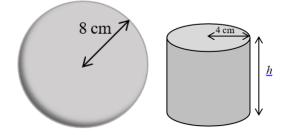
The total surface area of the cylinder is half the total surface area of the sphere.

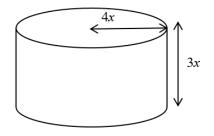
Work out the ratio of the volume of the sphere to the volume of the cylinder.

Give your answer in its simplest form.

8 The diagram shows a solid metal cylinder. The cylinder has base radius 4x and height 3x. The cylinder is melted down and made into a sphere of radius *r*.
Find an expression for *r* in terms of *x*.







Answers

1	a	$V = 396 \text{ cm}^3$	b	$V = 75\ 000\ {\rm cm}^3$
	c	$V = 402.5 \text{ cm}^3$	d	$V = 200\pi\mathrm{cm}^3$
	e	$V = 1008\pi \mathrm{cm}^3$	f	$V = \frac{1372}{3}\pi \text{ cm}^3$
	g	$V = 121.5\pi\mathrm{cm}^3$	h	$V = 18\pi \mathrm{cm}^3$
	i	$V = 48\pi \mathrm{cm}^3$	j	$V = \frac{98}{3}\pi\mathrm{cm}^3$

- **2** 17 cm
- **3** 17 cm

$$4 \qquad V = x^3 + \frac{17}{2}x^2 + 4x$$

- 5 60 cm^3
- 6 21.4 cm
- 7 32:9
- 8 $r = \sqrt[3]{36}x$

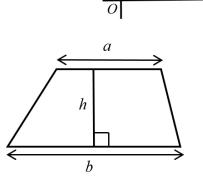
Area under a graph

A LEVEL LINKS

Scheme of work: 7b. Definite integrals and areas under curves

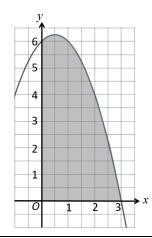
Key points

- To estimate the area under a curve, draw a chord between the two points you are finding the area between and straight lines down to the horizontal axis to create a trapezium. The area of the trapezium is an approximation for the area under a curve.
- The area of a trapezium = $\frac{1}{2}h(a+b)$



Examples

Example 1 Estimate the area of the region between the curve y = (3 - x)(2 + x) and the x-axis from x = 0 to x = 3. Use three strips of width 1 unit.



x 0 1 2 3 $y = (3 - x)(2 + x)$ 6 6 4 0	1 Use a table to record the value of y on the curve for each value of x.
Trapezium 1: $a_1 = 6 - 0 = 6, b_1 = 6 - 0 = 6$ Trapezium 2: $a_2 = 6 - 0 = 6, b_2 = 4 - 0 = 4$ Trapezium 3: $a_3 = 4 - 0 = 4, a_3 = 0 - 0 = 0$	2 Work out the dimensions of each trapezium. The distances between the <i>y</i> -values on the curve and the <i>x</i> -axis give the values for <i>a</i> .

Corbettmaths.com videos of use:

389 - Area under a Graph

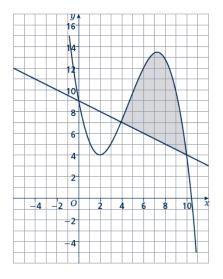
chord

390a - Instantaneous Rate of Change

► X

$\frac{1}{2}h(a_1 + b_1) = \frac{1}{2} \times 1(6 + 6) = 6$ $\frac{1}{2}h(a_2 + b_2) = \frac{1}{2} \times 1(6 + 4) = 5$ $\frac{1}{2}h(a_3 + b_3) = \frac{1}{2} \times 1(4 + 0) = 2$	3 Work out the area of each trapezium. $h = 1$ since the width of each trapezium is 1 unit.
Area = $6 + 5 + 2 = 13$ units ²	4 Work out the total area. Remember to give units with your answer.

Example 2 Estimate the shaded area. Use three strips of width 2 units.



x 4 6 8 10 y 7 12 13 4	1 Use a table to record y on the curve for each value of x .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 Use a table to record <i>y</i> on the straight line for each value of <i>x</i> .
Trapezium 1: $a_1 = 7 - 7 = 0, \ b_1 = 12 - 6 = 6$ Trapezium 2: $a_2 = 12 - 6 = 6, \ b_2 = 13 - 5 = 8$ Trapezium 3: $a_3 = 13 - 5 = 8, \ a_3 = 4 - 4 = 0$	3 Work out the dimensions of each trapezium. The distances between the <i>y</i> -values on the curve and the <i>y</i> -values on the straight line give the values for <i>a</i> .
$\frac{1}{2}h(a_1 + b_1) = \frac{1}{2} \times 2(0 + 6) = 6$ $\frac{1}{2}h(a_2 + b_2) = \frac{1}{2} \times 2(6 + 8) = 14$ $\frac{1}{2}h(a_3 + b_3) = \frac{1}{2} \times 2(8 + 0) = 8$	4 Work out the area of each trapezium. $h = 2$ since the width of each trapezium is 2 units.
Area = $6 + 14 + 8 = 28$ units ²	5 Work out the total area. Remember to give units with your answer.

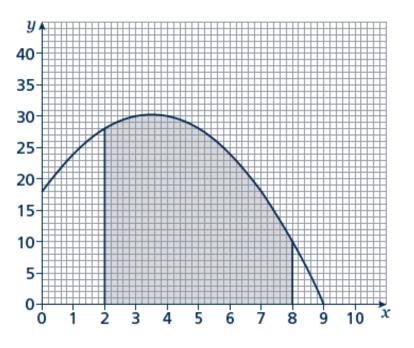
Practice

1 Estimate the area of the region between the curve y = (5 - x)(x + 2) and the *x*-axis from x = 1 to x = 5. Use four strips of width 1 unit.

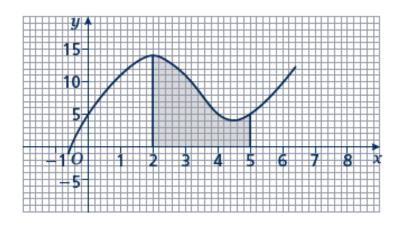
Hint:

For a full answer, remember to include 'units²'.

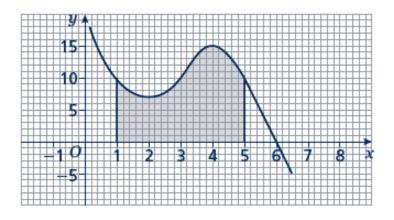
Estimate the shaded area shown on the axes.Use six strips of width 1 unit.



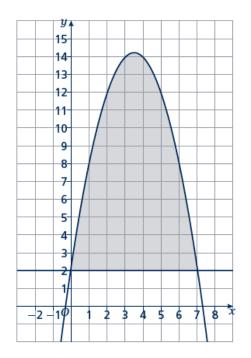
- 3 Estimate the area of the region between the curve $y = x^2 8x + 18$ and the x-axis from x = 2 to x = 6. Use four strips of width 1 unit.
- 4 Estimate the shaded area. Use six strips of width $\frac{1}{2}$ unit.



- 5 Estimate the area of the region between the curve $y = -x^2 4x + 5$ and the x-axis from x = -5 to x = 1. Use six strips of width 1 unit.
- 6 Estimate the shaded area. Use four strips of equal width.

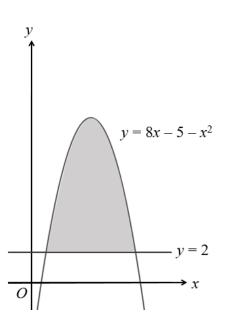


- 7 Estimate the area of the region between the curve $y = -x^2 + 2x + 15$ and the *x*-axis from x = 2 to x = 5. Use six strips of equal width.
- 8 Estimate the shaded area. Use seven strips of equal width.

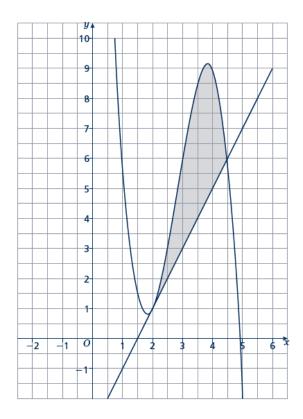


Extend

9 The curve $y = 8x - 5 - x^2$ and the line y = 2 are shown in the sketch. Estimate the shaded area using six strips of equal width.



10 Estimate the shaded area using five strips of equal width.



Answers

- 1 34 units²
- **2** 149 units²
- $3 \quad 14 \text{ units}^2$
- **4** 25 $\frac{1}{4}$ units²
- 5 35 units^2
- $6 \quad 42 \text{ units}^2$
- **7** 26 $\frac{7}{8}$ units²
- 8 56 units²
- 9 35 units²
- **10** $6\frac{1}{4}$ units²

